
Debugging with GDB
The GNU Source-Level Debugger

Edition 4.12, for GDB version 4.12
January 1994

Richard M. Stallman and Roland H. Pesch

Table of Contents

Summary of GDB . 1
Free software . 1
Contributors to GDB . 2

New Features since GDB Version 3.5 5

1 A Sample GDB Session . 7

2 Getting In and Out of GDB 11
2.1 Invoking GDB . 11

2.1.1 Choosing files . 12
2.1.2 Choosing modes . 13

2.2 Quitting GDB . 14
2.3 Shell commands . 14

3 GDB Commands . 17
3.1 Command syntax . 17
3.2 Command completion . 18
3.3 Getting help . 19

4 Running Programs Under GDB 23
4.1 Compiling for debugging . 23
4.2 Starting your program . 24
4.3 Your program’s arguments . 25
4.4 Your program’s environment . 25
4.5 Your program’s working directory . 27
4.6 Your program’s input and output . 27
4.7 Debugging an already-running process 28
4.8 Killing the child process . 29
4.9 Additional process information . 29
4.10 Debugging programs with multiple threads 30

5 Stopping and Continuing . 33
5.1 Breakpoints, watchpoints, and exceptions 33

5.1.1 Setting breakpoints . 34
5.1.2 Setting watchpoints . 37
5.1.3 Breakpoints and exceptions . 37
5.1.4 Deleting breakpoints . 38
5.1.5 Disabling breakpoints . 39

24 October 1995 i

Debugging with GDB

5.1.6 Break conditions . 40
5.1.7 Breakpoint command lists . 42
5.1.8 Breakpoint menus . 43
5.1.9 “Cannot insert breakpoints” 44

5.2 Continuing and stepping . 45
5.3 Signals . 47
5.4 Stopping and starting multi-thread programs 49

6 Examining the Stack . 51
6.1 Stack frames . 51
6.2 Backtraces . 52
6.3 Selecting a frame . 53
6.4 Information about a frame . 54
6.5 MIPS machines and the function stack 55

7 Examining Source Files . 57
7.1 Printing source lines . 57
7.2 Searching source files . 59
7.3 Specifying source directories . 59
7.4 Source and machine code . 60

8 Examining Data . 63
8.1 Expressions . 63
8.2 Program variables . 64
8.3 Artificial arrays . 65
8.4 Output formats . 66
8.5 Examining memory . 67
8.6 Automatic display . 69
8.7 Print settings . 71
8.8 Value history . 76
8.9 Convenience variables . 77
8.10 Registers . 78
8.11 Floating point hardware . 80

9 Using GDB with Different Languages 81
9.1 Switching between source languages . 81

9.1.1 Setting the working language 81
9.1.2 Having GDB infer the source language 82

9.2 Displaying the language . 82
9.3 Type and range checking . 83

9.3.1 An overview of type checking 83
9.3.2 An overview of range checking 84

9.4 Supported languages . 85
9.4.1 C and C++ . 86

ii 24 October 1995

9.4.1.1 C and C++ operators 86
9.4.1.2 C and C++ constants 88
9.4.1.3 C++ expressions . 89
9.4.1.4 C and C++ defaults 90
9.4.1.5 C and C++ type and range checks 90
9.4.1.6 GDB and C . 90
9.4.1.7 GDB features for C++ 90

9.4.2 Modula-2 . 92
9.4.2.1 Operators . 92
9.4.2.2 Built-in functions and procedures 93
9.4.2.3 Constants . 95
9.4.2.4 Modula-2 defaults . 95
9.4.2.5 Deviations from standard Modula-2 . . 96
9.4.2.6 Modula-2 type and range checks 96
9.4.2.7 The scope operators :: and 96
9.4.2.8 GDB and Modula-2 97

10 Examining the Symbol Table 99

11 Altering Execution . 103
11.1 Assignment to variables . 103
11.2 Continuing at a different address . 104
11.3 Giving your program a signal . 105
11.4 Returning from a function . 105
11.5 Calling program functions . 106
11.6 Patching programs . 106

12 GDB Files . 107
12.1 Commands to specify files . 107
12.2 Errors reading symbol files . 111

13 Specifying a Debugging Target 113
13.1 Active targets . 113
13.2 Commands for managing targets . 113

14 Controlling GDB . 115
14.1 Prompt . 115
14.2 Command editing . 115
14.3 Command history . 116
14.4 Screen size . 117
14.5 Numbers . 118
14.6 Optional warnings and messages . 118

24 October 1995 iii

Debugging with GDB

15 Canned Sequences of Commands 121
15.1 User-defined commands . 121
15.2 User-defined command hooks . 122
15.3 Command files . 122
15.4 Commands for controlled output . 123

16 Using GDB under GNU Emacs 125

17 Reporting Bugs in GDB . 129
17.1 Have you found a bug? . 129
17.2 How to report bugs . 129

Appendix A Command Line Editing 133
A.1 Introduction to Line Editing . 133
A.2 Readline Interaction . 133

A.2.1 Readline Bare Essentials . 133
A.2.2 Readline Movement Commands 134
A.2.3 Readline Killing Commands 135
A.2.4 Readline Arguments . 135

A.3 Readline Init File . 136
A.3.1 Readline Init Syntax . 136

A.3.1.1 Commands For Moving 138
A.3.1.2 Commands For Manipulating The

History . 138
A.3.1.3 Commands For Changing Text 139
A.3.1.4 Killing And Yanking 140
A.3.1.5 Specifying Numeric Arguments 140
A.3.1.6 Letting Readline Type For You 141
A.3.1.7 Some Miscellaneous Commands 141

A.3.2 Readline Vi Mode . 142

Appendix B Using History Interactively 143
B.1 History Interaction . 143

B.1.1 Event Designators . 143
B.1.2 Word Designators . 143
B.1.3 Modifiers . 144

Appendix C Renamed Commands 145

Appendix D Formatting Documentation 147

iv 24 October 1995

Appendix E Installing GDB 149
E.1 Compiling GDB in another directory 150
E.2 Specifying names for hosts and targets 151
E.3 configure options . 152

Index . 155

24 October 1995 v

Debugging with GDB

vi 24 October 1995

Summary of GDB

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what
is going on “inside” another program while it executes—or what another
program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support
of these) to help you catch bugs in the act:
� Start your program, specifying anything that might affect its behav-

ior.
� Make your program stop on specified conditions.
� Examine what has happened, when your program has stopped.
� Change things in your program, so you can experiment with correct-

ing the effects of one bug and go on to learn about another.

You can use GDB to debug programs written in C or C++. For more
information, see Section 9.4.1 “C and C++,” page 86.

Support for Modula-2 and Chill is partial. For information on Modula-
2, see Section 9.4.2 “Modula-2,” page 92. There is no further documen-
tation on Chill yet.

Debugging Pascal programs which use sets, subranges, file variables,
or nested functions does not currently work. GDB does not support
entering expressions, printing values, or similar features using Pascal
syntax.

GDB can be used to debug programs written in Fortran, although it
does not yet support entering expressions, printing values, or similar
features using Fortran syntax. It may be necessary to refer to some
variables with a trailing underscore.

Free software

GDB is free software, protected by the GNU General Public License
(GPL). The GPL gives you the freedom to copy or adapt a licensed
program—but every person getting a copy also gets with it the free-
dom to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical soft-
ware companies use copyrights to limit your freedoms; the Free Software
Foundation uses the GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says
that you have these freedoms and that you cannot take these freedoms
away from anyone else.

24 October 1995 1

Debugging with GDB

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other
GNU programs. Many others have contributed to its development. This
section attempts to credit major contributors. One of the virtues of free
software is that everyone is free to contribute to it; with regret, we cannot
actually acknowledge everyone here. The file ‘ChangeLog’ in the GDB
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.
Plea: Additions to this section are particularly welcome. If
you or your friends (or enemies, to be evenhanded) have been
unfairly omitted from this list, we would like to add your names!

So that they may not regard their long labor as thankless, we partic-
ularly thank those who shepherded GDB through major releases: Fred
Fish (releases 4.12, 4.11, 4.10, 4.9), Stu Grossman and John Gilmore
(releases 4.8, 4.7, 4.6, 4.5, 4.4), John Gilmore (releases 4.3, 4.2, 4.1, 4.0,
and 3.9); Jim Kingdon (releases 3.5, 3.4, 3.3); and Randy Smith (releases
3.2, 3.1, 3.0). As major maintainer of GDB for some period, each con-
tributed significantly to the structure, stability, and capabilities of the
entire debugger.

Richard Stallman, assisted at various times by Peter TerMaat, Chris
Hanson, and Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in
GDB, with significant additional contributions from Per Bothner. James
Clark wrote the GNU C++ demangler. Early work on C++ was by Peter
TerMaat (who also did much general update work leading to release 3.0).

GDB 4 uses the BFD subroutine library to examine multiple object-
file formats; BFD was a joint project of David V. Henkel-Wallace, Rich
Pixley, Steve Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did
the original support for encapsulated COFF.

Adam de Boor and Bradley Davis contributed the ISI Optimum V sup-
port. Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed
MIPS support. Jean-Daniel Fekete contributed Sun 386i support. Chris
Hanson improved the HP9000 support. Noboyuki Hikichi and Tomoyuki
Hasei contributed Sony/News OS 3 support. David Johnson contributed
Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support.
Keith Packard contributed NS32K support. Doug Rabson contributed
Acorn Risc Machine support. Chris Smith contributed Convex support
(and Fortran debugging). Jonathan Stone contributed Pyramid support.
Michael Tiemann contributed SPARC support. Tim Tucker contributed
support for the Gould NP1 and Gould Powernode. Pace Willison con-

2 24 October 1995

Summary of GDB

tributed Intel 386 support. Jay Vosburgh contributed Symmetry sup-
port.

Rich Schaefer and Peter Schauer helped with support of SunOS
shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree
about several machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped
develop remote debugging. Intel Corporation and Wind River Systems
contributed remote debugging modules for their products.

Brian Fox is the author of the readline libraries providing command-
line editing and command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code,
the Modula-2 support, and contributed the Languages chapter of this
manual.

Fred Fish wrote most of the support for Unix System Vr4. He also en-
hanced the command-completion support to cover C++ overloaded sym-
bols.

Hitachi America, Ltd. sponsored the support for Hitachi micropro-
cessors.

24 October 1995 3

Debugging with GDB

4 24 October 1995

New Features since GDB Version 3.5

New Features since GDB Version 3.5

Targets Using the new command target, you can select at runtime
whether you are debugging local files, local processes, stan-
dalone systems over a serial port, or realtime systems over
a TCP/IP connection. The command load can download pro-
grams into a remote system. Serial stubs are available for
Motorola 680x0, Intel 80386, and Sparc remote systems;
GDB also supports debugging realtime processes running
under VxWorks, using SunRPC Remote Procedure Calls over
TCP/IP to talk to a debugger stub on the target system. In-
ternally, GDB now uses a function vector to mediate access
to different targets; if you need to add your own support for
a remote protocol, this makes it much easier.

Watchpoints
GDB now sports watchpoints as well as breakpoints. You can
use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular
place in your program where this may happen.

Wide Output
Commands that issue wide output now insert newlines at
places designed to make the output more readable.

Object Code Formats
GDB uses a new library called the Binary File Descriptor
(BFD) Library to permit it to switch dynamically, without re-
configuration or recompilation, between different object-file
formats. Formats currently supported are COFF, ELF, a.out,
Intel 960 b.out, MIPS ECOFF, HPPA SOM (with stabs de-
bugging), and S-records; files may be read as .o files, archive
libraries, or core dumps. BFD is available as a subroutine
library so that other programs may take advantage of it, and
the other GNU binary utilities are being converted to use it.

Configuration and Ports
Compile-time configuration (to select a particular architec-
ture and operating system) is much easier. The script
configure now allows you to configure GDB as either a
native debugger or a cross-debugger. See Appendix E “In-
stalling GDB,” page 149, for details on how to configure.

Interaction
The user interface to the GDB control variables is simpler,
and is consolidated in two commands, set and show. Out-
put lines are now broken at readable places, rather than

24 October 1995 5

Debugging with GDB

overflowing onto the next line. You can suppress output of
machine-level addresses, displaying only source language in-
formation.

C++ GDB now supports C++ multiple inheritance (if used with a
GCC version 2 compiler), and also has limited support for
C++ exception handling, with the commands catch and info
catch: GDB can break when an exception is raised, before
the stack is peeled back to the exception handler’s context.

Modula-2 GDB now has preliminary support for the GNU Modula-2
compiler, currently under development at the State Univer-
sity of New York at Buffalo. Coordinated development of
both GDB and the GNU Modula-2 compiler will continue.
Other Modula-2 compilers are currently not supported, and
attempting to debug programs compiled with them will likely
result in an error as the symbol table of the executable is read
in.

Command Rationalization
Many GDB commands have been renamed to make them eas-
ier to remember and use. In particular, the subcommands
of info and show/set are grouped to make the former re-
fer to the state of your program, and the latter refer to the
state of GDB itself. See Appendix C “Renamed Commands,”
page 145, for details on what commands were renamed.

Shared Libraries
GDB 4 can debug programs and core files that use SunOS,
SVR4, or IBM RS/6000 shared libraries.

Threads On some systems, GDB 4 has facilities to debug multi-thread
programs.

Reference Card
GDB 4 has a reference card. See Appendix D “Formatting
the Documentation,” page 147, for instructions about how to
print it.

6 24 October 1995

Chapter 1: A Sample GDB Session

1 A Sample GDB Session
You can use this manual at your leisure to read all about GDB. How-

ever, a handful of commands are enough to get started using the debug-
ger. This chapter illustrates those commands.

One of the preliminary versions of GNU m4 (a generic macro processor)
exhibits the following bug: sometimes, when we change its quote strings
from the default, the commands used to capture one macro definition
within another stop working. In the following short m4 session, we
define a macro foo which expands to 0000; we then use the m4 built-in
defn to define bar as the same thing. However, when we change the
open quote string to <QUOTE> and the close quote string to <UNQUOTE>,
the same procedure fails to define a new synonym baz:

$ cd gnu/m4
$./m4
define(foo,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))
baz
C-d
m4: End of input: 0: fatal error: EOF in string

Let us use GDB to try to see what is going on.
$ gdb m4
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.
GDB 4.12, Copyright 1993 Free Software Foundation, Inc...
(gdb)

GDB reads only enough symbol data to know where to find the rest when
needed; as a result, the first prompt comes up very quickly. We now tell
GDB to use a narrower display width than usual, so that examples fit in
this manual.

(gdb) set width 70

We need to see how the m4 built-in changequote works. Having looked
at the source, we know the relevant subroutine is m4_changequote, so
we set a breakpoint there with the GDB break command.

(gdb) break m4 changequote

24 October 1995 7

Debugging with GDB

Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the run command, we start m4 running under GDB control; as long
as control does not reach the m4_changequote subroutine, the program
runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4
define(foo,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execu-
tion of m4, displaying information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879

879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line
of the current function.

(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
: nil,

set_quotes looks like a promising subroutine. We can go into it by using
the command s (step) instead of next. step goes to the next line to be
executed in any subroutine, so it steps into set_quotes.

(gdb) s
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and
its arguments) is called a stack frame display. It shows a summary of the
stack. We can use the backtrace command (which can also be spelled
bt), to see where we are in the stack as a whole: the backtrace command
displays a stack frame for each active subroutine.

(gdb) bt
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)

at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)

at macro.c:71
#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

8 24 October 1995

Chapter 1: A Sample GDB Session

We step through a few more lines to see what happens. The first two
times, we can use ‘s’; the next two times we use n to avoid falling into
the xstrdup subroutine.

(gdb) s
0x3b5c 532 if (rquote != def_rquote)
(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == ’\0’) ? \
def_lquote : xstrdup(lq);
(gdb) n
536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\
: xstrdup(rq);
(gdb) n
538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables
lquote and rquote to see if they are in fact the new left and right quotes
we specified. We use the command p (print) to see their values.

(gdb) p lquote
$1 = 0x35d40 "<QUOTE>"
(gdb) p rquote
$2 = 0x35d50 "<UNQUOTE>"

lquote and rquote are indeed the new left and right quotes. To look at
some context, we can display ten lines of source surrounding the current
line with the l (list) command.

(gdb) l
533 xfree(rquote);
534
535 lquote = (lq == nil || *lq == ’\0’) ? def_lquote\
: xstrdup (lq);
536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\
: xstrdup (rq);
537
538 len_lquote = strlen(rquote);
539 len_rquote = strlen(lquote);
540 }
541
542 void

Let us step past the two lines that set len_lquote and len_rquote, and
then examine the values of those variables.

(gdb) n
539 len_rquote = strlen(lquote);
(gdb) n
540 }
(gdb) p len lquote
$3 = 9
(gdb) p len rquote
$4 = 7

That certainly looks wrong, assuming len_lquote and len_rquote are
meant to be the lengths of lquote and rquote respectively. We can set

24 October 1995 9

Debugging with GDB

them to better values using the p command, since it can print the value
of any expression—and that expression can include subroutine calls and
assignments.

(gdb) p len lquote=strlen(lquote)
$5 = 7
(gdb) p len rquote=strlen(rquote)
$6 = 9

Is that enough to fix the problem of using the new quotes with the
m4 built-in defn? We can allow m4 to continue executing with the c
(continue) command, and then try the example that caused trouble
initially:

(gdb) c
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

Success! The new quotes now work just as well as the default ones.
The problem seems to have been just the two typos defining the wrong
lengths. We allow m4 exit by giving it an EOF as input:

C-d
Program exited normally.

The message ‘Program exited normally.’ is from GDB; it indicates m4
has finished executing. We can end our GDB session with the GDB quit
command.

(gdb) quit

10 24 October 1995

Chapter 2: Getting In and Out of GDB

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it.
(The essentials: type ‘gdb’ to start GDB, and type quit or C-d to exit.)

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads
commands from the terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to
specify more of your debugging environment at the outset.

The command-line options described here are designed to cover a
variety of situations; in some environments, some of these options may
effectively be unavailable.

The most usual way to start GDB is with one argument, specifying
an executable program:

gdb program

You can also start with both an executable program and a core file spec-
ified:

gdb program core

You can, instead, specify a process ID as a second argument, if you
want to debug a running process:

gdb program 1234

would attach GDB to process 1234 (unless you also have a file named
‘1234’; GDB does check for a core file first).

Taking advantage of the second command-line argument requires a
fairly complete operating system; when you use GDB as a remote debug-
ger attached to a bare board, there may not be any notion of “process”,
and there is often no way to get a core dump.
You can further control how GDB starts up by using command-line op-
tions. GDB itself can remind you of the options available.
Type

gdb -help

to display all available options and briefly describe their use (‘gdb -h’ is
a shorter equivalent).

All options and command line arguments you give are processed in
sequential order. The order makes a difference when the ‘-x’ option is
used.

24 October 1995 11

Debugging with GDB

2.1.1 Choosing files

When GDB starts, it reads any arguments other than options as spec-
ifying an executable file and core file (or process ID). This is the same as
if the arguments were specified by the ‘-se’ and ‘-c’ options respectively.
(GDB reads the first argument that does not have an associated option
flag as equivalent to the ‘-se’ option followed by that argument; and the
second argument that does not have an associated option flag, if any, as
equivalent to the ‘-c’ option followed by that argument.)

Many options have both long and short forms; both are shown in the
following list. GDB also recognizes the long forms if you truncate them,
so long as enough of the option is present to be unambiguous. (If you
prefer, you can flag option arguments with ‘--’ rather than ‘-’, though
we illustrate the more usual convention.)

-symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropri-

ate, and for examining pure data in conjunction with a core
dump.

-se file Read symbol table from file file and use it as the executable
file.

-core file
-c file Use file file as a core dump to examine.

-c number
Connect to process ID number, as with the attach command
(unless there is a file in core-dump format named number, in
which case ‘-c’ specifies that file as a core dump to read).

-command file
-x file Execute GDB commands from file file. See Section 15.3

“Command files,” page 122.

-directory directory
-d directory

Add directory to the path to search for source files.

-m
-mapped Warning: this option depends on operating system facilities

that are not supported on all systems.
If memory-mapped files are available on your system through
the mmap system call, you can use this option to have GDB
write the symbols from your program into a reusable file in
the current directory. If the program you are debugging is

12 24 October 1995

Chapter 2: Getting In and Out of GDB

called ‘/tmp/fred’, the mapped symbol file is ‘./fred.syms’.
Future GDB debugging sessions notice the presence of this
file, and can quickly map in symbol information from it,
rather than reading the symbol table from the executable
program.
The ‘.syms’ file is specific to the host machine where GDB
is run. It holds an exact image of the internal GDB symbol
table. It cannot be shared across multiple host platforms.

-r
-readnow Read each symbol file’s entire symbol table immediately,

rather than the default, which is to read it incrementally
as it is needed. This makes startup slower, but makes future
operations faster.

The -mapped and -readnow options are typically combined in order
to build a ‘.syms’ file that contains complete symbol information. (See
Section 12.1 “Commands to specify files,” page 107, for information on
‘.syms’ files.) A simple GDB invocation to do nothing but build a ‘.syms’
file for future use is:

gdb -batch -nx -mapped -readnow programname

2.1.2 Choosing modes

You can run GDB in various alternative modes—for example, in batch
mode or quiet mode.

-nx
-n Do not execute commands from any initialization files (nor-

mally called ‘.gdbinit’). Normally, the commands in these
files are executed after all the command options and argu-
ments have been processed. See Section 15.3 “Command
files,” page 122.

-quiet
-q “Quiet”. Do not print the introductory and copyright mes-

sages. These messages are also suppressed in batch mode.

-batch Run in batch mode. Exit with status 0 after processing all the
command files specified with ‘-x’ (and all commands from ini-
tialization files, if not inhibited with ‘-n’). Exit with nonzero
status if an error occurs in executing the GDB commands in
the command files.
Batch mode may be useful for running GDB as a filter, for ex-
ample to download and run a program on another computer;
in order to make this more useful, the message

24 October 1995 13

Debugging with GDB

Program exited normally.

(which is ordinarily issued whenever a program running un-
der GDB control terminates) is not issued when running in
batch mode.

-cd directory
Run GDB using directory as its working directory, instead
of the current directory.

-fullname
-f Emacs sets this option when it runs GDB as a subprocess.

It tells GDB to output the full file name and line number
in a standard, recognizable fashion each time a stack frame
is displayed (which includes each time your program stops).
This recognizable format looks like two ‘\032’ characters, fol-
lowed by the file name, line number and character position
separated by colons, and a newline. The Emacs-to-GDB in-
terface program uses the two ‘\032’ characters as a signal to
display the source code for the frame.

-b bps Set the line speed (baud rate or bits per second) of any serial
interface used by GDB for remote debugging.

-tty device
Run using device for your program’s standard input and
output.

2.2 Quitting GDB

quit To exit GDB, use the quit command (abbreviated q), or type
an end-of-file character (usually C-d).

An interrupt (often C-c) does not exit from GDB, but rather termi-
nates the action of any GDB command that is in progress and returns
to GDB command level. It is safe to type the interrupt character at any
time because GDB does not allow it to take effect until a time when it is
safe.

If you have been using GDB to control an attached process or device,
you can release it with the detach command (see Section 4.7 “Debugging
an already-running process,” page 28).

2.3 Shell commands

If you need to execute occasional shell commands during your debug-
ging session, there is no need to leave or suspend GDB; you can just use
the shell command.

14 24 October 1995

Chapter 2: Getting In and Out of GDB

shell command string
Invoke a the standard shell to execute command string. If
it exists, the environment variable SHELL determines which
shell to run. Otherwise GDB uses /bin/sh.

The utility make is often needed in development environments. You
do not have to use the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments.
This is equivalent to ‘shell make make-args’.

24 October 1995 15

Debugging with GDB

16 24 October 1995

Chapter 3: GDB Commands

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the
command name, if that abbreviation is unambiguous; and you can repeat
certain GDB commands by typing just RET. You can also use the TAB key
to get GDB to fill out the rest of a word in a command (or to show you
the alternatives available, if there is more than one possibility).

3.1 Command syntax

A GDB command is a single line of input. There is no limit on how
long it can be. It starts with a command name, which is followed by
arguments whose meaning depends on the command name. For exam-
ple, the command step accepts an argument which is the number of
times to step, as in ‘step 5’. You can also use the step command with no
arguments. Some command names do not allow any arguments.

GDB command names may always be truncated if that abbreviation
is unambiguous. Other possible command abbreviations are listed in
the documentation for individual commands. In some cases, even am-
biguous abbreviations are allowed; for example, s is specially defined as
equivalent to step even though there are other commands whose names
start with s. You can test abbreviations by using them as arguments to
the help command.

A blank line as input to GDB (typing just RET) means to repeat the
previous command. Certain commands (for example, run) will not repeat
this way; these are commands whose unintentional repetition might
cause trouble and which you are unlikely to want to repeat.

The list and x commands, when you repeat them with RET, construct
new arguments rather than repeating exactly as typed. This permits
easy scanning of source or memory.

GDB can also use RET in another way: to partition lengthy output, in
a way similar to the common utility more (see Section 14.4 “Screen size,”
page 117). Since it is easy to press one RET too many in this situation,
GDB disables command repetition after any command that generates
this sort of display.

Any text from a # to the end of the line is a comment; it does nothing.
This is useful mainly in command files (see Section 15.3 “Command files,”
page 122).

24 October 1995 17

Debugging with GDB

3.2 Command completion

GDB can fill in the rest of a word in a command for you, if there
is only one possibility; it can also show you what the valid possibili-
ties are for the next word in a command, at any time. This works for
GDB commands, GDB subcommands, and the names of symbols in your
program.

Press the TAB key whenever you want GDB to fill out the rest of a
word. If there is only one possibility, GDB fills in the word, and waits
for you to finish the command (or press RET to enter it). For example, if
you type

(gdb) info bre TAB

GDB fills in the rest of the word ‘breakpoints’, since that is the only
info subcommand beginning with ‘bre’:

(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints
command, or backspace and enter something else, if ‘breakpoints’ does
not look like the command you expected. (If you were sure you wanted
info breakpoints in the first place, you might as well just type RET
immediately after ‘info bre’, to exploit command abbreviations rather
than command completion).

If there is more than one possibility for the next word when you
press TAB, GDB sounds a bell. You can either supply more characters
and try again, or just press TAB a second time; GDB displays all the
possible completions for that word. For example, you might want to
set a breakpoint on a subroutine whose name begins with ‘make_’, but
when you type b make_TAB GDB just sounds the bell. Typing TAB again
displays all the function names in your program that begin with those
characters, for example:

(gdb) b make_ TAB
GDB sounds bell; press TAB again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_

After displaying the available possibilities, GDB copies your partial in-
put (‘b make_’ in the example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you
can press M-? rather than pressing TAB twice. M-? means META ?. You

18 24 October 1995

Chapter 3: GDB Commands

can type this either by holding down a key designated as the META shift
on your keyboard (if there is one) while typing ?, or as ESC followed by ?.

Sometimes the string you need, while logically a “word”, may contain
parentheses or other characters that GDB normally excludes from its
notion of a word. To permit word completion to work in this situation,
you may enclose words in ’ (single quote marks) in GDB commands.

The most likely situation where you might need this is in typing the
name of a C++ function. This is because C++ allows function overloading
(multiple definitions of the same function, distinguished by argument
type). For example, when you want to set a breakpoint you may need
to distinguish whether you mean the version of name that takes an int
parameter, name(int), or the version that takes a float parameter,
name(float). To use the word-completion facilities in this situation,
type a single quote ’ at the beginning of the function name. This alerts
GDB that it may need to consider more information than usual when
you press TAB or M-? to request word completion:

(gdb) b ’bubble(M-?
bubble(double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires us-
ing quotes. When this happens, GDB inserts the quote for you (while
completing as much as it can) if you do not type the quote in the first
place:

(gdb) b bub TAB
GDB alters your input line to the following, and rings a bell:

(gdb) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have
not yet started typing the argument list when you ask for completion on
an overloaded symbol.

3.3 Getting help

You can always ask GDB itself for information on its commands, using
the command help.

help
h You can use help (abbreviated h) with no arguments to dis-

play a short list of named classes of commands:
(gdb) help
List of classes of commands:

running -- Running the program
stack -- Examining the stack

24 October 1995 19

Debugging with GDB

data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help class
Using one of the general help classes as an argument, you
can get a list of the individual commands in that class. For
example, here is the help display for the class status:

(gdb) help status
Status inquiries.

List of commands:

show -- Generic command for showing things set
with "set"
info -- Generic command for printing status

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command
With a command name as help argument, GDB displays a
short paragraph on how to use that command.

In addition to help, you can use the GDB commands info and show
to inquire about the state of your program, or the state of GDB itself.
Each command supports many topics of inquiry; this manual introduces
each of them in the appropriate context. The listings under info and
under show in the Index point to all the sub-commands. See “Index,”
page 155.

info This command (abbreviated i) is for describing the state of
your program. For example, you can list the arguments given
to your program with info args, list the registers currently
in use with info registers, or list the breakpoints you have
set with info breakpoints. You can get a complete list of
the info sub-commands with help info.

20 24 October 1995

Chapter 3: GDB Commands

show In contrast, show is for describing the state of GDB itself.
You can change most of the things you can show, by using
the related command set; for example, you can control what
number system is used for displays with set radix, or simply
inquire which is currently in use with show radix.
To display all the settable parameters and their current val-
ues, you can use show with no arguments; you may also use
info set. Both commands produce the same display.

Here are three miscellaneous show subcommands, all of which are
exceptional in lacking corresponding set commands:

show version
Show what version of GDB is running. You should include
this information in GDB bug-reports. If multiple versions of
GDB are in use at your site, you may occasionally want to
determine which version of GDB you are running; as GDB
evolves, new commands are introduced, and old ones may
wither away. The version number is also announced when
you start GDB.

show copying
Display information about permission for copying GDB.

show warranty
Display the GNU “NO WARRANTY” statement.

24 October 1995 21

Debugging with GDB

22 24 October 1995

Chapter 4: Running Programs Under GDB

4 Running Programs Under GDB

When you run a program under GDB, you must first generate de-
bugging information when you compile it. You may start it with its
arguments, if any, in an environment of your choice. You may redirect
your program’s input and output, debug an already running process, or
kill a child process.

4.1 Compiling for debugging

In order to debug a program effectively, you need to generate de-
bugging information when you compile it. This debugging information
is stored in the object file; it describes the data type of each variable
or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you
run the compiler.

Many C compilers are unable to handle the ‘-g’ and ‘-O’ options to-
gether. Using those compilers, you cannot generate optimized executa-
bles containing debugging information.

GCC, the GNU C compiler, supports ‘-g’ with or without ‘-O’, making
it possible to debug optimized code. We recommend that you always use
‘-g’ whenever you compile a program. You may think your program is
correct, but there is no sense in pushing your luck.

When you debug a program compiled with ‘-g -O’, remember that
the optimizer is rearranging your code; the debugger shows you what
is really there. Do not be too surprised when the execution path does
not exactly match your source file! An extreme example: if you define
a variable, but never use it, GDB never sees that variable—because the
compiler optimizes it out of existence.

Some things do not work as well with ‘-g -O’ as with just ‘-g’, partic-
ularly on machines with instruction scheduling. If in doubt, recompile
with ‘-g’ alone, and if this fixes the problem, please report it as a bug
(including a test case!).

Older versions of the GNU C compiler permitted a variant option ‘-gg’
for debugging information. GDB no longer supports this format; if your
GNU C compiler has this option, do not use it.

24 October 1995 23

Debugging with GDB

4.2 Starting your program

run
r Use the run command to start your program under GDB.

You must first specify the program name (except on Vx-
Works) with an argument to GDB (see Chapter 2 “Getting
In and Out of GDB,” page 11), or by using the file or exec-
file command (see Section 12.1 “Commands to specify files,”
page 107).

If you are running your program in an execution environment that
supports processes, run creates an inferior process and makes that pro-
cess run your program. (In environments without processes, run jumps
to the start of your program.)

The execution of a program is affected by certain information it re-
ceives from its superior. GDB provides ways to specify this information,
which you must do before starting your program. (You can change it
after starting your program, but such changes only affect your program
the next time you start it.) This information may be divided into four
categories:

The arguments.
Specify the arguments to give your program as the argu-
ments of the run command. If a shell is available on your
target, the shell is used to pass the arguments, so that you
may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix
systems, you can control which shell is used with the SHELL
environment variable. See Section 4.3 “Your program’s argu-
ments,” page 25.

The environment.
Your program normally inherits its environment from GDB,
but you can use the GDB commands set environment and
unset environment to change parts of the environment that
affect your program. See Section 4.4 “Your program’s envi-
ronment,” page 25.

The working directory.
Your program inherits its working directory from GDB. You
can set the GDB working directory with the cd command
in GDB. See Section 4.5 “Your program’s working directory,”
page 27.

24 24 October 1995

Chapter 4: Running Programs Under GDB

The standard input and output.
Your program normally uses the same device for standard
input and standard output as GDB is using. You can redirect
input and output in the run command line, or you can use
the tty command to set a different device for your program.
See Section 4.6 “Your program’s input and output,” page 27.
Warning: While input and output redirection work, you can-
not use pipes to pass the output of the program you are de-
bugging to another program; if you attempt this, GDB is
likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute
immediately. See Chapter 5 “Stopping and continuing,” page 33, for dis-
cussion of how to arrange for your program to stop. Once your program
has stopped, you may call functions in your program, using the print or
call commands. See Chapter 8 “Examining Data,” page 63.

If the modification time of your symbol file has changed since the last
time GDB read its symbols, GDB discards its symbol table, and reads it
again. When it does this, GDB tries to retain your current breakpoints.

4.3 Your program’s arguments

The arguments to your program can be specified by the arguments of
the run command. They are passed to a shell, which expands wildcard
characters and performs redirection of I/O, and thence to your program.
Your SHELL environment variable (if it exists) specifies what shell GDB
if you do not define SHELL, GDB uses /bin/sh.

runwith no arguments uses the same arguments used by the previous
run, or those set by the set args command.

set args Specify the arguments to be used the next time your program
is run. If set args has no arguments, run executes your pro-
gram with no arguments. Once you have run your program
with arguments, using set args before the next run is the
only way to run it again without arguments.

show args
Show the arguments to give your program when it is started.

4.4 Your program’s environment

The environment consists of a set of environment variables and their
values. Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your

24 October 1995 25

Debugging with GDB

search path for programs to run. Usually you set up environment vari-
ables with the shell and they are inherited by all the other programs you
run. When debugging, it can be useful to try running your program with
a modified environment without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable
(the search path for executables), for both GDB and your pro-
gram. You may specify several directory names, separated
by ‘:’ or whitespace. If directory is already in the path, it
is moved to the front, so it is searched sooner.
You can use the string ‘$cwd’ to refer to whatever is the cur-
rent working directory at the time GDB searches the path.
If you use ‘.’ instead, it refers to the directory where you exe-
cuted the path command. GDB replaces ‘.’ in the directory
argument (with the current path) before adding directory
to the search path.

show paths
Display the list of search paths for executables (the PATH
environment variable).

show environment [varname]
Print the value of environment variable varname to be given
to your program when it starts. If you do not supply varname,
print the names and values of all environment variables to
be given to your program. You can abbreviate environment
as env.

set environment varname [=] value
Set environment variable varname to value. The value
changes for your program only, not for GDB itself. valuemay
be any string; the values of environment variables are just
strings, and any interpretation is supplied by your program
itself. The value parameter is optional; if it is eliminated,
the variable is set to a null value.
For example, this command:

set env USER = foo

tells a Unix program, when subsequently run, that its user
is named ‘foo’. (The spaces around ‘=’ are used for clarity
here; they are not actually required.)

unset environment varname
Remove variable varname from the environment to be passed
to your program. This is different from ‘set env varname =’;
unset environment removes the variable from the environ-
ment, rather than assigning it an empty value.

26 24 October 1995

Chapter 4: Running Programs Under GDB

Warning: GDB runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL
variable names a shell that runs an initialization file—such as ‘.cshrc’
for C-shell, or ‘.bashrc’ for BASH—any variables you set in that file
affect your program. You may wish to move setting of environment
variables to files that are only run when you sign on, such as ‘.login’ or
‘.profile’.

4.5 Your program’s working directory

Each time you start your program with run, it inherits its working
directory from the current working directory of GDB. The GDB working
directory is initially whatever it inherited from its parent process (typ-
ically the shell), but you can specify a new working directory in GDB
with the cd command.

The GDB working directory also serves as a default for the commands
that specify files for GDB to operate on. See Section 12.1 “Commands to
specify files,” page 107.

cd directory
Set the GDB working directory to directory.

pwd Print the GDB working directory.

4.6 Your program’s input and output

By default, the program you run under GDB does input and output to
the same terminal that GDB uses. GDB switches the terminal to its own
terminal modes to interact with you, but it records the terminal modes
your program was using and switches back to them when you continue
running your program.

info terminal
Displays information recorded by GDB about the terminal
modes your program is using.

You can redirect your program’s input and/or output using shell redi-
rection with the run command. For example,

run > outfile

starts your program, diverting its output to the file ‘outfile’.
Another way to specify where your program should do input and

output is with the tty command. This command accepts a file name as
argument, and causes this file to be the default for future run commands.
It also resets the controlling terminal for the child process, for future run
commands. For example,

24 October 1995 27

Debugging with GDB

tty /dev/ttyb

directs that processes started with subsequent run commands default to
do input and output on the terminal ‘/dev/ttyb’ and have that as their
controlling terminal.

An explicit redirection in run overrides the tty command’s effect on
the input/output device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command,
only the input for your program is affected. The input for GDB still comes
from your terminal.

4.7 Debugging an already-running process

attach process-id
This command attaches to a running process—one that was
started outside GDB. (info files shows your active targets.)
The command takes as argument a process ID. The usual
way to find out the process-id of a Unix process is with the
ps utility, or with the ‘jobs -l’ shell command.
attach does not repeat if you press RET a second time after
executing the command.

To use attach, your program must be running in an environment
which supports processes; for example, attach does not work for pro-
grams on bare-board targets that lack an operating system. You must
also have permission to send the process a signal.

When using attach, you should first use the file command to specify
the program running in the process and load its symbol table. See
Section 12.1 “Commands to Specify Files,” page 107.

The first thing GDB does after arranging to debug the specified pro-
cess is to stop it. You can examine and modify an attached process with
all the GDB commands that are ordinarily available when you start pro-
cesses with run. You can insert breakpoints; you can step and continue;
you can modify storage. If you would rather the process continue run-
ning, you may use the continue command after attaching GDB to the
process.

detach When you have finished debugging the attached process, you
can use the detach command to release it from GDB con-
trol. Detaching the process continues its execution. After
the detach command, that process and GDB become com-
pletely independent once more, and you are ready to attach
another process or start one with run. detach does not repeat
if you press RET again after executing the command.

28 24 October 1995

Chapter 4: Running Programs Under GDB

If you exit GDB or use the run command while you have an attached
process, you kill that process. By default, GDB asks for confirmation if
you try to do either of these things; you can control whether or not you
need to confirm by using the set confirm command (see Section 14.6
“Optional warnings and messages,” page 118).

4.8 Killing the child process

kill Kill the child process in which your program is running under
GDB.

This command is useful if you wish to debug a core dump instead of
a running process. GDB ignores any core dump file while your program
is running.

On some operating systems, a program cannot be executed outside
GDB while you have breakpoints set on it inside GDB. You can use the
kill command in this situation to permit running your program outside
the debugger.

The kill command is also useful if you wish to recompile and relink
your program, since on many systems it is impossible to modify an exe-
cutable file while it is running in a process. In this case, when you next
type run, GDB notices that the file has changed, and reads the symbol
table again (while trying to preserve your current breakpoint settings).

4.9 Additional process information

Some operating systems provide a facility called ‘/proc’ that can be
used to examine the image of a running process using file-system sub-
routines. If GDB is configured for an operating system with this facility,
the command info proc is available to report on several kinds of infor-
mation about the process running your program.

info proc
Summarize available information about the process.

info proc mappings
Report on the address ranges accessible in the program, with
information on whether your program may read, write, or
execute each range.

info proc times
Starting time, user CPU time, and system CPU time for your
program and its children.

24 October 1995 29

Debugging with GDB

info proc id
Report on the process IDs related to your program: its own
process ID, the ID of its parent, the process group ID, and
the session ID.

info proc status
General information on the state of the process. If the process
is stopped, this report includes the reason for stopping, and
any signal received.

info proc all
Show all the above information about the process.

4.10 Debugging programs with multiple threads

In some operating systems, a single program may have more than one
thread of execution. The precise semantics of threads differ from one op-
erating system to another, but in general the threads of a single program
are akin to multiple processes—except that they share one address space
(that is, they can all examine and modify the same variables). On the
other hand, each thread has its own registers and execution stack, and
perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:
� automatic notification of new threads
� ‘thread threadno’, a command to switch among threads
� ‘info threads’, a command to inquire about existing threads
� thread-specific breakpoints

Warning: These facilities are not yet available on every GDB
configuration where the operating system supports threads. If
your GDB does not support threads, these commands have no
effect. For example, a system without thread support shows
no output from ‘info threads’, and always rejects the thread
command, like this:

(gdb) info threads
(gdb) thread 1
Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads
while your program runs—but whenever GDB takes control, one thread
in particular is always the focus of debugging. This thread is called the
current thread. Debugging commands show program information from
the perspective of the current thread.

30 24 October 1995

Chapter 4: Running Programs Under GDB

Whenever GDB detects a new thread in your program, it displays
the target system’s identification for the thread with a message in the
form ‘[New systag]’. systag is a thread identifier whose form varies
depending on the particular system. For example, on LynxOS, you might
see

[New process 35 thread 27]

when GDB notices a new thread. In contrast, on an SGI system, the
systag is simply something like ‘process 368’, with no further qualifier.

For debugging purposes, GDB associates its own thread number—
always a single integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program.
GDB displays for each thread (in this order):
1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)
3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates
the current thread.
For example,

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

thread threadno
Make thread number threadno the current thread. The
command argument threadno is the internal GDB thread
number, as shown in the first field of the ‘info threads’ dis-
play. GDB responds by displaying the system identifier of the
thread you selected, and its current stack frame summary:

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

As with the ‘[New ...]’ message, the form of the text af-
ter ‘Switching to’ depends on your system’s conventions for
identifying threads.

Whenever GDB stops your program, due to a breakpoint or a signal,
it automatically selects the thread where that breakpoint or signal hap-
pened. GDB alerts you to the context switch with a message of the form
‘[Switching to systag]’ to identify the thread.

24 October 1995 31

Debugging with GDB

See Section 5.4 “Stopping and starting multi-thread programs,”
page 49, for more information about how GDB behaves when you stop
and start programs with multiple threads.

See Section 5.1.2 “Setting watchpoints,” page 37, for information
about watchpoints in programs with multiple threads.

32 24 October 1995

Chapter 5: Stopping and Continuing

5 Stopping and Continuing
The principal purposes of using a debugger are so that you can stop

your program before it terminates; or so that, if your program runs into
trouble, you can investigate and find out why.

Inside GDB, your program may stop for any of several reasons, such
as a signal, a breakpoint, or reaching a new line after a GDB command
such as step. You may then examine and change variables, set new
breakpoints or remove old ones, and then continue execution. Usually,
the messages shown by GDB provide ample explanation of the status of
your program—but you can also explicitly request this information at
any time.

info program
Display information about the status of your program:
whether it is running or not, what process it is, and why
it stopped.

5.1 Breakpoints, watchpoints, and exceptions

A breakpoint makes your program stop whenever a certain point in
the program is reached. For each breakpoint, you can add conditions to
control in finer detail whether your program stops. You can set break-
points with the break command and its variants (see Section 5.1.1 “Set-
ting breakpoints,” page 34), to specify the place where your program
should stop by line number, function name or exact address in the pro-
gram. In languages with exception handling (such as GNU C++), you
can also set breakpoints where an exception is raised (see Section 5.1.3
“Breakpoints and exceptions,” page 37).

A watchpoint is a special breakpoint that stops your program when
the value of an expression changes. You must use a different command
to set watchpoints (see Section 5.1.2 “Setting watchpoints,” page 37), but
aside from that, you can manage a watchpoint like any other breakpoint:
you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed auto-
matically whenever GDB stops at a breakpoint. See Section 8.6 “Auto-
matic display,” page 69.

GDB assigns a number to each breakpoint or watchpoint when you
create it; these numbers are successive integers starting with one. In
many of the commands for controlling various features of breakpoints
you use the breakpoint number to say which breakpoint you want to
change. Each breakpoint may be enabled or disabled; if disabled, it has
no effect on your program until you enable it again.

24 October 1995 33

Debugging with GDB

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The
debugger convenience variable ‘$bpnum’ records the number of the beak-
point you’ve set most recently; see Section 8.9 “Convenience variables,”
page 77, for a discussion of what you can do with convenience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function. When using
source languages that permit overloading of symbols, such
as C++, function may refer to more than one possible place
to break. See Section 5.1.8 “Breakpoint menus,” page 43, for
a discussion of that situation.

break +offset
break -offset

Set a breakpoint some number of lines forward or back from
the position at which execution stopped in the currently se-
lected frame.

break linenum
Set a breakpoint at line linenum in the current source file.
That file is the last file whose source text was printed. This
breakpoint stops your program just before it executes any of
the code on that line.

break filename:linenum
Set a breakpoint at line linenum in source file filename.

break filename:function
Set a breakpoint at entry to function function found in file
filename. Specifying a file name as well as a function name
is superfluous except when multiple files contain similarly
named functions.

break *address
Set a breakpoint at address address. You can use this to
set breakpoints in parts of your program which do not have
debugging information or source files.

break When called without any arguments, break sets a breakpoint
at the next instruction to be executed in the selected stack
frame (see Chapter 6 “Examining the Stack,” page 51). In any
selected frame but the innermost, this makes your program
stop as soon as control returns to that frame. This is similar
to the effect of a finish command in the frame inside the
selected frame—except that finish does not leave an active

34 24 October 1995

Chapter 5: Stopping and Continuing

breakpoint. If you use break without an argument in the
innermost frame, GDB stops the next time it reaches the
current location; this may be useful inside loops.
GDB normally ignores breakpoints when it resumes execu-
tion, until at least one instruction has been executed. If
it did not do this, you would be unable to proceed past a
breakpoint without first disabling the breakpoint. This rule
applies whether or not the breakpoint already existed when
your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expres-
sion cond each time the breakpoint is reached, and stop only
if the value is nonzero—that is, if cond evaluates as true.
‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Sec-
tion 5.1.6 “Break conditions,” page 40, for more information
on breakpoint conditions.

tbreak args
Set a breakpoint enabled only for one stop. args are the same
as for the break command, and the breakpoint is set in the
same way, but the breakpoint is automatically disabled after
the first time your program stops there. See Section 5.1.5
“Disabling breakpoints,” page 39.

rbreak regex
Set breakpoints on all functions matching the regular ex-
pression regex. This command sets an unconditional break-
point on all matches, printing a list of all breakpoints it set.
Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete
them, disable them, or make them conditional the same way
as any other breakpoint.
When debugging C++ programs, rbreak is useful for setting
breakpoints on overloaded functions that are not members
of any special classes.

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not
deleted, with the following columns for each breakpoint:

Breakpoint Numbers
Type Breakpoint or watchpoint.

24 October 1995 35

Debugging with GDB

Disposition
Whether the breakpoint is marked to be disabled
or deleted when hit.

Enabled or Disabled
Enabled breakpoints are marked with ‘y’. ‘n’
marks breakpoints that are not enabled.

Address Where the breakpoint is in your program, as a
memory address

What Where the breakpoint is in the source for your
program, as a file and line number.

If a breakpoint is conditional, info break shows the condi-
tion on the line following the affected breakpoint; breakpoint
commands, if any, are listed after that.
info break with a breakpoint number n as argument lists
only that breakpoint. The convenience variable $_ and the
default examining-address for the x command are set to the
address of the last breakpoint listed (see Section 8.5 “Exam-
ining memory,” page 67).

GDB allows you to set any number of breakpoints at the same place in
your program. There is nothing silly or meaningless about this. When
the breakpoints are conditional, this is even useful (see Section 5.1.6
“Break conditions,” page 40).

GDB itself sometimes sets breakpoints in your program for special
purposes, such as proper handling of longjmp (in C programs). These
internal breakpoints are assigned negative numbers, starting with -1;
‘info breakpoints’ does not display them.

You can see these breakpoints with the GDB maintenance command
‘maint info breakpoints’.

maint info breakpoints
Using the same format as ‘info breakpoints’, display both
the breakpoints you’ve set explicitly, and those GDB is using
for internal purposes. Internal breakpoints are shown with
negative breakpoint numbers. The type column identifies
what kind of breakpoint is shown:

breakpoint
Normal, explicitly set breakpoint.

watchpoint
Normal, explicitly set watchpoint.

longjmp Internal breakpoint, used to handle correctly
stepping through longjmp calls.

36 24 October 1995

Chapter 5: Stopping and Continuing

longjmp resume
Internal breakpoint at the target of a longjmp.

until Temporary internal breakpoint used by the GDB
until command.

finish Temporary internal breakpoint used by the GDB
finish command.

5.1.2 Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place where
this may happen.

Watchpoints currently execute two orders of magnitude more slowly
than other breakpoints, but this can be well worth it to catch errors
where you have no clue what part of your program is the culprit.

watch expr
Set a watchpoint for an expression.

info watchpoints
This command prints a list of watchpoints and breakpoints;
it is the same as info break.

Warning: in multi-thread programs, watchpoints have only lim-
ited usefulness. With the current watchpoint implementation,
GDB can only watch the value of an expression in a single
thread. If you are confident that the expression can only change
due to the current thread’s activity (and if you are also confi-
dent that no other thread can become current), then you can
use watchpoints as usual. However, GDB may not notice when
a non-current thread’s activity changes the expression.

5.1.3 Breakpoints and exceptions

Some languages, such as GNU C++, implement exception handling.
You can use GDB to examine what caused your program to raise an
exception, and to list the exceptions your program is prepared to handle
at a given point in time.

catch exceptions
You can set breakpoints at active exception handlers by us-
ing the catch command. exceptions is a list of names of
exceptions to catch.

24 October 1995 37

Debugging with GDB

You can use info catch to list active exception handlers. See Sec-
tion 6.4 “Information about a frame,” page 54.

There are currently some limitations to exception handling in GDB:
� If you call a function interactively, GDB normally returns control to

you when the function has finished executing. If the call raises an
exception, however, the call may bypass the mechanism that returns
control to you and cause your program to simply continue running
until it hits a breakpoint, catches a signal that GDB is listening for,
or exits.

� You cannot raise an exception interactively.
� You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling:
if you need to know exactly where an exception is raised, it is better to
stop before the exception handler is called, since that way you can see
the stack before any unwinding takes place. If you set a breakpoint in
an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some
knowledge of the implementation. In the case of GNU C++, exceptions
are raised by calling a library function named __raise_exceptionwhich
has the following ANSI C interface:

/* addr is where the exception identifier is stored.
ID is the exception identifier. */

void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding
takes place, set a breakpoint on __raise_exception (see Section 5.1
“Breakpoints; watchpoints; and exceptions,” page 33).

With a conditional breakpoint (see Section 5.1.6 “Break conditions,”
page 40) that depends on the value of id, you can stop your program
when a specific exception is raised. You can use multiple conditional
breakpoints to stop your program when any of a number of exceptions
are raised.

5.1.4 Deleting breakpoints

It is often necessary to eliminate a breakpoint or watchpoint once it
has done its job and you no longer want your program to stop there. This
is called deleting the breakpoint. A breakpoint that has been deleted no
longer exists; it is forgotten.

With the clear command you can delete breakpoints according to
where they are in your program. With the delete command you can

38 24 October 1995

Chapter 5: Stopping and Continuing

delete individual breakpoints or watchpoints by specifying their break-
point numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB
automatically ignores breakpoints on the first instruction to be executed
when you continue execution without changing the execution address.

clear Delete any breakpoints at the next instruction to be exe-
cuted in the selected stack frame (see Section 6.3 “Selecting
a frame,” page 53). When the innermost frame is selected,
this is a good way to delete a breakpoint where your program
just stopped.

clear function
clear filename:function

Delete any breakpoints set at entry to the function function.

clear linenum
clear filename:linenum

Delete any breakpoints set at or within the code of the spec-
ified line.

delete [breakpoints] [bnums...]
Delete the breakpoints or watchpoints of the numbers spec-
ified as arguments. If no argument is specified, delete all
breakpoints (GDB asks confirmation, unless you have set
confirm off). You can abbreviate this command as d.

5.1.5 Disabling breakpoints

Rather than deleting a breakpoint or watchpoint, you might prefer
to disable it. This makes the breakpoint inoperative as if it had been
deleted, but remembers the information on the breakpoint so that you
can enable it again later.

You disable and enable breakpoints and watchpoints with the enable
and disable commands, optionally specifying one or more breakpoint
numbers as arguments. Use info break or info watch to print a list of
breakpoints or watchpoints if you do not know which numbers to use.

A breakpoint or watchpoint can have any of four different states of
enablement:
� Enabled. The breakpoint stops your program. A breakpoint set with

the break command starts out in this state.
� Disabled. The breakpoint has no effect on your program.
� Enabled once. The breakpoint stops your program, but then becomes

disabled. A breakpoint set with the tbreak command starts out in
this state.

24 October 1995 39

Debugging with GDB

� Enabled for deletion. The breakpoint stops your program, but im-
mediately after it does so it is deleted permanently.

You can use the following commands to enable or disable breakpoints
and watchpoints:

disable [breakpoints] [bnums...]
Disable the specified breakpoints—or all breakpoints, if none
are listed. A disabled breakpoint has no effect but is not
forgotten. All options such as ignore-counts, conditions and
commands are remembered in case the breakpoint is enabled
again later. You may abbreviate disable as dis.

enable [breakpoints] [bnums...]
Enable the specified breakpoints (or all defined breakpoints).
They become effective once again in stopping your program.

enable [breakpoints] once bnums...
Enable the specified breakpoints temporarily. GDB disables
any of these breakpoints immediately after stopping your
program.

enable [breakpoints] delete bnums...
Enable the specified breakpoints to work once, then die. GDB
deletes any of these breakpoints as soon as your program
stops there.

Save for a breakpoint set with tbreak (see Section 5.1.1 “Setting
breakpoints,” page 34), breakpoints that you set are initially enabled;
subsequently, they become disabled or enabled only when you use one
of the commands above. (The command until can set and delete a
breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 “Continuing and stepping,” page 45.)

5.1.6 Break conditions

The simplest sort of breakpoint breaks every time your program
reaches a specified place. You can also specify a condition for a break-
point. A condition is just a Boolean expression in your programming
language (see Section 8.1 “Expressions,” page 63). A breakpoint with a
condition evaluates the expression each time your program reaches it,
and your program stops only if the condition is true.

This is the converse of using assertions for program validation; in that
situation, you want to stop when the assertion is violated—that is, when
the condition is false. In C, if you want to test an assertion expressed
by the condition assert, you should set the condition ‘! assert’ on the
appropriate breakpoint.

40 24 October 1995

Chapter 5: Stopping and Continuing

Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow—but
it might be simpler, say, to just set a watchpoint on a variable name, and
specify a condition that tests whether the new value is an interesting
one.

Break conditions can have side effects, and may even call functions
in your program. This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to format
special data structures. The effects are completely predictable unless
there is another enabled breakpoint at the same address. (In that case,
GDB might see the other breakpoint first and stop your program without
checking the condition of this one.) Note that breakpoint commands
are usually more convenient and flexible for the purpose of performing
side effects when a breakpoint is reached (see Section 5.1.7 “Breakpoint
command lists,” page 42).

Break conditions can be specified when a breakpoint is set, by using
‘if’ in the arguments to the break command. See Section 5.1.1 “Setting
breakpoints,” page 34. They can also be changed at any time with the
condition command. The watch command does not recognize the if
keyword; condition is the only way to impose a further condition on a
watchpoint.

condition bnum expression
Specify expression as the break condition for breakpoint or
watchpoint number bnum. After you set a condition, break-
point bnum stops your program only if the value of expres-
sion is true (nonzero, in C). When you use condition, GDB
checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in
the context of your breakpoint. GDB does not actually evalu-
ate expression at the time the condition command is given,
however. See Section 8.1 “Expressions,” page 63.

condition bnum
Remove the condition from breakpoint number bnum. It be-
comes an ordinary unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times. This is so
useful that there is a special way to do it, using the ignore count of the
breakpoint. Every breakpoint has an ignore count, which is an integer.
Most of the time, the ignore count is zero, and therefore has no effect.
But if your program reaches a breakpoint whose ignore count is positive,
then instead of stopping, it just decrements the ignore count by one and
continues. As a result, if the ignore count value is n, the breakpoint does
not stop the next n times your program reaches it.

24 October 1995 41

Debugging with GDB

ignore bnum count
Set the ignore count of breakpoint number bnum to count.
The next count times the breakpoint is reached, your pro-
gram’s execution does not stop; other than to decrement the
ignore count, GDB takes no action.
To make the breakpoint stop the next time it is reached,
specify a count of zero.
When you use continue to resume execution of your program
from a breakpoint, you can specify an ignore count directly
as an argument to continue, rather than using ignore. See
Section 5.2 “Continuing and stepping,” page 45.
If a breakpoint has a positive ignore count and a condition,
the condition is not checked. Once the ignore count reaches
zero, GDB resumes checking the condition.
You could achieve the effect of the ignore count with a con-
dition such as ‘$foo-- <= 0’ using a debugger convenience
variable that is decremented each time. See Section 8.9 “Con-
venience variables,” page 77.

5.1.7 Breakpoint command lists

You can give any breakpoint (or watchpoint) a series of commands to
execute when your program stops due to that breakpoint. For example,
you might want to print the values of certain expressions, or enable other
breakpoints.

commands [bnum]
... command-list ...
end Specify a list of commands for breakpoint number bnum. The

commands themselves appear on the following lines. Type a
line containing just end to terminate the commands.
To remove all commands from a breakpoint, type commands
and follow it immediately with end; that is, give no com-
mands.
With no bnum argument, commands refers to the last break-
point or watchpoint set (not to the breakpoint most recently
encountered).

Pressing RET as a means of repeating the last GDB command is dis-
abled within a command-list.

You can use breakpoint commands to start your program up again.
Simply use the continue command, or step, or any other command that
resumes execution.

42 24 October 1995

Chapter 5: Stopping and Continuing

Any other commands in the command list, after a command that
resumes execution, are ignored. This is because any time you resume
execution (even with a simple next or step), you may encounter an-
other breakpoint—which could have its own command list, leading to
ambiguities about which list to execute.

If the first command you specify in a command list is silent, the
usual message about stopping at a breakpoint is not printed. This may
be desirable for breakpoints that are to print a specific message and then
continue. If none of the remaining commands print anything, you see no
sign that the breakpoint was reached. silent is meaningful only at the
beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely
controlled output, and are often useful in silent breakpoints. See Sec-
tion 15.4 “Commands for controlled output,” page 123.

For example, here is how you could use breakpoint commands to print
the value of x at entry to foo whenever x is positive.

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one
bug so you can test for another. Put a breakpoint just after the erroneous
line of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so
that no output is produced. Here is an example:

break 403
commands
silent
set x = y + 4
cont
end

5.1.8 Breakpoint menus

Some programming languages (notably C++) permit a single function
name to be defined several times, for application in different contexts.
This is called overloading. When a function name is overloaded, ‘break
function’ is not enough to tell GDB where you want a breakpoint. If

24 October 1995 43

Debugging with GDB

you realize this is a problem, you can use something like ‘break func-
tion(types)’ to specify which particular version of the function you
want. Otherwise, GDB offers you a menu of numbered choices for differ-
ent possible breakpoints, and waits for your selection with the prompt
‘>’. The first two options are always ‘[0] cancel’ and ‘[1] all’. Typing
1 sets a breakpoint at each definition of function, and typing 0 aborts
the break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol String::after. We choose three
particular definitions of that function name:

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
breakpoints.
(gdb)

5.1.9 “Cannot insert breakpoints”

Under some operating systems, breakpoints cannot be used in a pro-
gram if any other process is running that program. In this situation,
attempting to run or continue a program with a breakpoint causes GDB
to stop the other process.

When this happens, you have three ways to proceed:

1. Remove or disable the breakpoints, then continue.

2. Suspend GDB, and copy the file containing your program to a new
name. Resume GDB and use the exec-file command to specify
that GDB should run your program under that name. Then start
your program again.

3. Relink your program so that the text segment is nonsharable, using
the linker option ‘-N’. The operating system limitation may not
apply to nonsharable executables.

44 24 October 1995

Chapter 5: Stopping and Continuing

5.2 Continuing and stepping

Continuing means resuming program execution until your program
completes normally. In contrast, stepping means executing just one
more “step” of your program, where “step” may mean either one line of
source code, or one machine instruction (depending on what particular
command you use). Either when continuing or when stepping, your
program may stop even sooner, due to a breakpoint or a signal. (If due
to a signal, you may want to use handle, or use ‘signal 0’ to resume
execution. See Section 5.3 “Signals,” page 47.)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your pro-
gram last stopped; any breakpoints set at that address are
bypassed. The optional argument ignore-count allows you
to specify a further number of times to ignore a breakpoint at
this location; its effect is like that of ignore (see Section 5.1.6
“Break conditions,” page 40).
The argument ignore-count is meaningful only when your
program stopped due to a breakpoint. At other times, the
argument to continue is ignored.
The synonyms c and fg are provided purely for convenience,
and have exactly the same behavior as continue.

To resume execution at a different place, you can use return (see
Section 11.4 “Returning from a function,” page 105) to go back to the
calling function; or jump (see Section 11.2 “Continuing at a different
address,” page 104) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see
Section 5.1 “Breakpoints; watchpoints; and exceptions,” page 33) at the
beginning of the function or the section of your program where a problem
is believed to lie, run your program until it stops at that breakpoint, and
then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a dif-
ferent source line, then stop it and return control to GDB.
This command is abbreviated s.

Warning: If you use the step command while control
is within a function that was compiled without de-
bugging information, execution proceeds until con-
trol reaches a function that does have debugging
information.

24 October 1995 45

Debugging with GDB

step count
Continue running as in step, but do so count times. If a
breakpoint is reached, or a signal not related to stepping
occurs before count steps, stepping stops right away.

next [count]
Continue to the next source line in the current (innermost)
stack frame. Similar to step, but any function calls appear-
ing within the line of code are executed without stopping.
Execution stops when control reaches a different line of code
at the stack level which was executing when the next com-
mand was given. This command is abbreviated n.
An argument count is a repeat count, as for step.
next within a function that lacks debugging information acts
like step, but any function calls appearing within the code
of the function are executed without stopping.

finish Continue running until just after function in the selected
stack frame returns. Print the returned value (if any).
Contrast this with the return command (see Section 11.4
“Returning from a function,” page 105).

until
u Continue running until a source line past the current line, in

the current stack frame, is reached. This command is used
to avoid single stepping through a loop more than once. It is
like the next command, except that when until encounters a
jump, it automatically continues execution until the program
counter is greater than the address of the jump.
This means that when you reach the end of a loop after single
stepping though it, until makes your program continue ex-
ecution until it exits the loop. In contrast, a next command
at the end of a loop simply steps back to the beginning of the
loop, which forces you to step through the next iteration.
until always stops your program if it attempts to exit the
current stack frame.
until may produce somewhat counterintuitive results if the
order of machine code does not match the order of the source
lines. For example, in the following excerpt from a debug-
ging session, the f (frame) command shows that execution is
stopped at line 206; yet when we use until, we get to line
195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();

46 24 October 1995

Chapter 5: Stopping and Continuing

(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler
had generated code for the loop closure test at the end, rather
than the start, of the loop—even though the test in a C for-
loop is written before the body of the loop. The until com-
mand appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone
to an earlier statement—not in terms of the actual machine
code.
untilwith no argument works by means of single instruction
stepping, and hence is slower than until with an argument.

until location
u location

Continue running your program until either the specified
location is reached, or the current stack frame returns. lo-
cation is any of the forms of argument acceptable to break
(see Section 5.1.1 “Setting breakpoints,” page 34). This form
of the command uses breakpoints, and hence is quicker than
until without an argument.

stepi
si Execute one machine instruction, then stop and return to the

debugger.
It is often useful to do ‘display/i $pc’ when stepping by ma-
chine instructions. This makes GDB automatically display
the next instruction to be executed, each time your program
stops. See Section 8.6 “Automatic display,” page 69.
An argument is a repeat count, as in step.

nexti
ni Execute one machine instruction, but if it is a function call,

proceed until the function returns.
An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The
operating system defines the possible kinds of signals, and gives each
kind a name and a number. For example, in Unix SIGINT is the signal
a program gets when you type an interrupt (often C-c); SIGSEGV is the
signal a program gets from referencing a place in memory far away from
all the areas in use; SIGALRM occurs when the alarm clock timer goes off
(which happens only if your program has requested an alarm).

24 October 1995 47

Debugging with GDB

Some signals, including SIGALRM, are a normal part of the functioning
of your program. Others, such as SIGSEGV, indicate errors; these signals
are fatal (kill your program immediately) if the program has not specified
in advance some other way to handle the signal. SIGINT does not indicate
an error in your program, but it is normally fatal so it can carry out the
purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your
program. You can tell GDB in advance what to do for each kind of
signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM
(so as not to interfere with their role in the functioning of your program)
but to stop your program immediately whenever an error signal happens.
You can change these settings with the handle command.

info signals
Print a table of all the kinds of signals and how GDB has
been told to handle each one. You can use this to see the
signal numbers of all the defined types of signals.

handle signal keywords...
Change the way GDB handles signal signal. signal can be
the number of a signal or its name (with or without the ‘SIG’
at the beginning). The keywords say what change to make.

The keywords allowed by the handle command can be abbreviated.
Their full names are:

nostop GDB should not stop your program when this signal happens.
It may still print a message telling you that the signal has
come in.

stop GDB should stop your program when this signal happens.
This implies the print keyword as well.

print GDB should print a message when this signal happens.

noprint GDB should not mention the occurrence of the signal at all.
This implies the nostop keyword as well.

pass GDB should allow your program to see this signal; your pro-
gram can handle the signal, or else it may terminate if the
signal is fatal and not handled.

nopass GDB should not allow your program to see this signal.

When a signal stops your program, the signal is not visible until you
continue. Your program sees the signal then, if pass is in effect for the
signal in question at that time. In other words, after GDB reports a
signal, you can use the handle command with pass or nopass to control
whether your program sees that signal when you continue.

48 24 October 1995

Chapter 5: Stopping and Continuing

You can also use the signal command to prevent your program from
seeing a signal, or cause it to see a signal it normally would not see, or
to give it any signal at any time. For example, if your program stopped
due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more
execution; but your program would probably terminate immediately as
a result of the fatal signal once it saw the signal. To prevent this, you
can continue with ‘signal 0’. See Section 11.3 “Giving your program a
signal,” page 105.

5.4 Stopping and starting multi-thread programs

When your program has multiple threads (see Section 4.10 “Debug-
ging programs with multiple threads,” page 30), you can choose whether
to set breakpoints on all threads, or on a particular thread.

break linespec thread threadno
break linespec thread threadno if ...

Use the qualifier ‘thread threadno’ with a breakpoint com-
mand to specify that you only want GDB to stop the program
when a particular thread reaches this breakpoint. threadno
is one of the numeric thread identifiers assigned by GDB,
shown in the first column of the ‘info threads’ display.
If you do not specify ‘thread threadno’ when you set a break-
point, the breakpoint applies to all threads of your program.
You can use the thread qualifier on conditional breakpoints
as well; in this case, place ‘thread threadno’ before the
breakpoint condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads
of execution stop, not just the current thread. This allows you to examine
the overall state of the program, including switching between threads,
without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start exe-
cuting. This is true even when single-stepping with commands like step
or next.

In particular, GDB cannot single-step all threads in lockstep. Since
thread scheduling is up to your debugging target’s operating system (not
controlled by GDB), other threads may execute more than one statement
while the current thread completes a single step. Moreover, in general
other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

24 October 1995 49

Debugging with GDB

You might even find your program stopped in another thread after
continuing or even single-stepping. This happens whenever some other
thread runs into a breakpoint, a signal, or an exception before the first
thread completes whatever you requested.

50 24 October 1995

Chapter 6: Examining the Stack

6 Examining the Stack

When your program has stopped, the first thing you need to know is
where it stopped and how it got there.

Each time your program performs a function call, the information
about where in your program the call was made from is saved in a block
of data called a stack frame. The frame also contains the arguments of
the call and the local variables of the function that was called. All the
stack frames are allocated in a region of memory called the call stack.

When your program stops, the GDB commands for examining the
stack allow you to see all of this information.

One of the stack frames is selected by GDB and many GDB commands
refer implicitly to the selected frame. In particular, whenever you ask
GDB for the value of a variable in your program, the value is found in the
selected frame. There are special GDB commands to select whichever
frame you are interested in.

When your program stops, GDB automatically selects the currently
executing frame and describes it briefly as the frame command does (see
Section 6.4 “Information about a frame,” page 54).

6.1 Stack frames

The call stack is divided up into contiguous pieces called stack frames,
or frames for short; each frame is the data associated with one call to
one function. The frame contains the arguments given to the function,
the function’s local variables, and the address at which the function is
executing.

When your program is started, the stack has only one frame, that
of the function main. This is called the initial frame or the outermost
frame. Each time a function is called, a new frame is made. Each time a
function returns, the frame for that function invocation is eliminated. If
a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is
called the innermost frame. This is the most recently created of all the
stack frames that still exist.

Inside your program, stack frames are identified by their addresses.
A stack frame consists of many bytes, each of which has its own address;
each kind of computer has a convention for choosing one of those bytes
whose address serves as the address of the frame. Usually this address
is kept in a register called the frame pointer register while execution is
going on in that frame.

24 October 1995 51

Debugging with GDB

GDB assigns numbers to all existing stack frames, starting with zero
for the innermost frame, one for the frame that called it, and so on
upward. These numbers do not really exist in your program; they are
assigned by GDB to give you a way of designating stack frames in GDB
commands.

Some compilers provide a way to compile functions so that
they operate without stack frames. (For example, the gcc option
‘-fomit-frame-pointer’ generates functions without a frame.) This
is occasionally done with heavily used library functions to save the
frame setup time. GDB has limited facilities for dealing with these
function invocations. If the innermost function invocation has no stack
frame, GDB nevertheless regards it as though it had a separate frame,
which is numbered zero as usual, allowing correct tracing of the func-
tion call chain. However, GDB has no provision for frameless functions
elsewhere in the stack.

6.2 Backtraces

A backtrace is a summary of how your program got where it is. It
shows one line per frame, for many frames, starting with the currently
executing frame (frame zero), followed by its caller (frame one), and on
up the stack.

backtrace
bt Print a backtrace of the entire stack: one line per frame for

all frames in the stack.
You can stop the backtrace at any time by typing the system
interrupt character, normally C-c.

backtrace n
bt n Similar, but print only the innermost n frames.

backtrace -n
bt -n Similar, but print only the outermost n frames.

The names where and info stack (abbreviated info s) are additional
aliases for backtrace.

Each line in the backtrace shows the frame number and the function
name. The program counter value is also shown—unless you use set
print address off. The backtrace also shows the source file name and
line number, as well as the arguments to the function. The program
counter value is omitted if it is at the beginning of the code for that line
number.

Here is an example of a backtrace. It was made with the command
‘bt 3’, so it shows the innermost three frames.

52 24 October 1995

Chapter 6: Examining the Stack

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242

#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71

(More stack frames follow...)

The display for frame zero does not begin with a program counter value,
indicating that your program has stopped at the beginning of the code
for line 993 of builtin.c.

6.3 Selecting a frame

Most commands for examining the stack and other data in your pro-
gram work on whichever stack frame is selected at the moment. Here are
the commands for selecting a stack frame; all of them finish by printing
a brief description of the stack frame just selected.

frame n
f n Select frame number n. Recall that frame zero is the inner-

most (currently executing) frame, frame one is the frame that
called the innermost one, and so on. The highest-numbered
frame is the one for main.

frame addr
f addr Select the frame at address addr. This is useful mainly if

the chaining of stack frames has been damaged by a bug,
making it impossible for GDB to assign numbers properly to
all frames. In addition, this can be useful when your program
has multiple stacks and switches between them.
On the SPARC architecture, frame needs two addresses to se-
lect an arbitrary frame: a frame pointer and a stack pointer.

up n Move n frames up the stack. For positive numbers n, this
advances toward the outermost frame, to higher frame num-
bers, to frames that have existed longer. n defaults to one.

down n Move n frames down the stack. For positive numbers n, this
advances toward the innermost frame, to lower frame num-
bers, to frames that were created more recently. n defaults
to one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing
the frame. The first line shows the frame number, the function name,
the arguments, and the source file and line number of execution in that
frame. The second line shows the text of that source line.

24 October 1995 53

Debugging with GDB

For example:

(gdb) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

at env.c:10

10 read_input_file (argv[i]);

After such a printout, the list command with no arguments prints
ten lines centered on the point of execution in the frame. See Section 7.1
“Printing source lines,” page 57.

up-silently n
down-silently n

These two commands are variants of up and down, respec-
tively; they differ in that they do their work silently, without
causing display of the new frame. They are intended primar-
ily for use in GDB command scripts, where the output might
be unnecessary and distracting.

6.4 Information about a frame

There are several other commands to print information about the
selected stack frame.

frame
f When used without any argument, this command does not

change which frame is selected, but prints a brief description
of the currently selected stack frame. It can be abbreviated
f. With an argument, this command is used to select a stack
frame. See Section 6.3 “Selecting a frame,” page 53.

info frame
info f This command prints a verbose description of the selected

stack frame, including the address of the frame, the ad-
dresses of the next frame down (called by this frame) and
the next frame up (caller of this frame), the language that
the source code corresponding to this frame was written in,
the address of the frame’s arguments, the program counter
saved in it (the address of execution in the caller frame), and
which registers were saved in the frame. The verbose de-
scription is useful when something has gone wrong that has
made the stack format fail to fit the usual conventions.

54 24 October 1995

Chapter 6: Examining the Stack

info frame addr
info f addr

Print a verbose description of the frame at address addr,
without selecting that frame. The selected frame remains
unchanged by this command.

info args
Print the arguments of the selected frame, each on a separate
line.

info locals
Print the local variables of the selected frame, each on a sep-
arate line. These are all variables (declared either static or
automatic) accessible at the point of execution of the selected
frame.

info catch
Print a list of all the exception handlers that are active in the
current stack frame at the current point of execution. To see
other exception handlers, visit the associated frame (using
the up, down, or frame commands); then type info catch.
See Section 5.1.3 “Breakpoints and exceptions,” page 37.

6.5 MIPS machines and the function stack

MIPS based computers use an unusual stack frame, which sometimes
requires GDB to search backward in the object code to find the beginning
of a function.

To improve response time (especially for embedded applications,
where GDB may be restricted to a slow serial line for this search) you
may want to limit the size of this search, using one of these commands:

set heuristic-fence-post limit
Restrict GDB to examining at most limit bytes in its search
for the beginning of a function. A value of 0 (the default)
means there is no limit.

show heuristic-fence-post
Display the current limit.

These commands are available only when GDB is configured for debug-
ging programs on MIPS processors.

24 October 1995 55

Debugging with GDB

56 24 October 1995

Chapter 7: Examining Source Files

7 Examining Source Files

GDB can print parts of your program’s source, since the debugging
information recorded in the program tells GDB what source files were
used to build it. When your program stops, GDB spontaneously prints
the line where it stopped. Likewise, when you select a stack frame (see
Section 6.3 “Selecting a frame,” page 53), GDB prints the line where
execution in that frame has stopped. You can print other portions of
source files by explicit command.

If you use GDB through its GNU Emacs interface, you may prefer to
use Emacs facilities to view source; see Chapter 16 “Using GDB under
GNU Emacs,” page 125.

7.1 Printing source lines

To print lines from a source file, use the list command (abbreviated
l). There are several ways to specify what part of the file you want to
print.

Here are the forms of the list command most commonly used:

list linenum
Print lines centered around line number linenum in the cur-
rent source file.

list function
Print lines centered around the beginning of function func-
tion.

list Print more lines. If the last lines printed were printed with
a list command, this prints lines following the last lines
printed; however, if the last line printed was a solitary line
printed as part of displaying a stack frame (see Chapter 6
“Examining the Stack,” page 51), this prints lines centered
around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the
list command. You can change this using set listsize:

set listsize count
Make the list command display count source lines (unless
the list argument explicitly specifies some other number).

show listsize
Display the number of lines that list prints.

24 October 1995 57

Debugging with GDB

Repeating a list command with RET discards the argument, so it is
equivalent to typing just list. This is more useful than listing the same
lines again. An exception is made for an argument of ‘-’; that argument
is preserved in repetition so that each repetition moves up in the source
file.

In general, the list command expects you to supply zero, one or
two linespecs. Linespecs specify source lines; there are several ways of
writing them but the effect is always to specify some source line. Here
is a complete description of the possible arguments for list:

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last. Both arguments are line-
specs.

list ,last
Print lines ending with last.

list first,
Print lines starting with first.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds of
linespec.

number Specifies line number of the current source file. When a list
command has two linespecs, this refers to the same source
file as the first linespec.

+offset Specifies the line offset lines after the last line printed.
When used as the second linespec in a list command that
has two, this specifies the line offset lines down from the
first linespec.

-offset Specifies the line offset lines before the last line printed.

filename:number
Specifies line number in the source file filename.

function Specifies the line of the open-brace that begins the body of
the function function.

filename:function
Specifies the line of the open-brace that begins the body of the
function function in the file filename. You only need the file

58 24 October 1995

Chapter 7: Examining Source Files

name with a function name to avoid ambiguity when there
are identically named functions in different source files.

*address Specifies the line containing the program address address.
address may be any expression.

7.2 Searching source files

There are two commands for searching through the current source
file for a regular expression.

forward-search regexp
search regexp

The command ‘forward-search regexp’ checks each line,
starting with the one following the last line listed, for a match
for regexp. It lists the line that is found. You can use syn-
onym ‘search regexp’ or abbreviate the command name as
fo.

reverse-search regexp
The command ‘reverse-search regexp’ checks each line,
starting with the one before the last line listed and going
backward, for a match for regexp. It lists the line that is
found. You can abbreviate this command as rev.

7.3 Specifying source directories

Executable programs sometimes do not record the directories of the
source files from which they were compiled, just the names. Even when
they do, the directories could be moved between the compilation and your
debugging session. GDB has a list of directories to search for source files;
this is called the source path. Each time GDB wants a source file, it tries
all the directories in the list, in the order they are present in the list,
until it finds a file with the desired name. Note that the executable
search path is not used for this purpose. Neither is the current working
directory, unless it happens to be in the source path.

If GDB cannot find a source file in the source path, and the object
program records a directory, GDB tries that directory too. If the source
path is empty, and there is no record of the compilation directory, GDB
looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any
information it has cached about where source files are found and where
each line is in the file.

When you start GDB, its source path is empty. To add other directo-
ries, use the directory command.

24 October 1995 59

Debugging with GDB

directory dirname ...
Add directory dirname to the front of the source path. Several
directory names may be given to this command, separated by
‘:’ or whitespace. You may specify a directory that is already
in the source path; this moves it forward, so GDB searches it
sooner.
You can use the string ‘$cdir’ to refer to the compilation
directory (if one is recorded), and ‘$cwd’ to refer to the current
working directory. ‘$cwd’ is not the same as ‘.’—the former
tracks the current working directory as it changes during
your GDB session, while the latter is immediately expanded
to the current directory at the time you add an entry to the
source path.

directory
Reset the source path to empty again. This requires confir-
mation.

show directories
Print the source path: show which directories it contains.

If your source path is cluttered with directories that are no longer
of interest, GDB may sometimes cause confusion by finding the wrong
versions of source. You can correct the situation as follows:
1. Use directory with no argument to reset the source path to empty.
2. Use directory with suitable arguments to reinstall the directories

you want in the source path. You can add all the directories in one
command.

7.4 Source and machine code

You can use the command info line to map source lines to program
addresses (and vice versa), and the command disassemble to display a
range of addresses as machine instructions.

info line linespec
Print the starting and ending addresses of the compiled code
for source line linespec. You can specify source lines in any
of the ways understood by the list command (see Section 7.1
“Printing source lines,” page 57).

For example, we can use info line to discover the location of the
object code for the first line of function m4_changequote:

(gdb) info line m4_changecom
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

60 24 October 1995

Chapter 7: Examining Source Files

We can also inquire (using *addr as the form for linespec) what source
line covers a particular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to
the starting address of the line, so that ‘x/i’ is sufficient to begin exam-
ining the machine code (see Section 8.5 “Examining memory,” page 67).
Also, this address is saved as the value of the convenience variable $_
(see Section 8.9 “Convenience variables,” page 77).

disassemble
This specialized command dumps a range of memory as ma-
chine instructions. The default memory range is the function
surrounding the program counter of the selected frame. A
single argument to this command is a program counter value;
GDB dumps the function surrounding this value. Two argu-
ments specify a range of addresses (first inclusive, second
exclusive) to dump.

We can use disassemble to inspect the object code range shown in
the last info line example (the example shows SPARC machine instruc-
tions):

(gdb) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin_init+5348>: ld [%i1+4], %o0
0x63f0 <builtin_init+5352>: b 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: ld [%o0+4], %o0
0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin_init+5364>: call 0x9288 <path_search>
0x6400 <builtin_init+5368>: nop
End of assembler dump.

24 October 1995 61

Debugging with GDB

62 24 October 1995

Chapter 8: Examining Data

8 Examining Data
The usual way to examine data in your program is with the print

command (abbreviated p), or its synonym inspect. It evaluates and
prints the value of an expression of the language your program is written
in (see Chapter 9 “Using GDB with Different Languages,” page 81).

print exp
print /f exp

exp is an expression (in the source language). By default
the value of exp is printed in a format appropriate to its
data type; you can choose a different format by specifying
‘/f’, where f is a letter specifying the format; see Section 8.4
“Output formats,” page 66.

print
print /f If you omit exp, GDB displays the last value again (from

the value history; see Section 8.8 “Value history,” page 76).
This allows you to conveniently inspect the same value in an
alternative format.

A more low-level way of examining data is with the x command.
It examines data in memory at a specified address and prints it in a
specified format. See Section 8.5 “Examining memory,” page 67.

If you are interested in information about types, or about how the
fields of a struct or class are declared, use the ptype exp command rather
than print. See Chapter 10 “Examining the Symbol Table,” page 99.

8.1 Expressions

print and many other GDB commands accept an expression and
compute its value. Any kind of constant, variable or operator defined
by the programming language you are using is valid in an expression
in GDB. This includes conditional expressions, function calls, casts and
string constants. It unfortunately does not include symbols defined by
preprocessor #define commands.

Because C is so widespread, most of the expressions shown in exam-
ples in this manual are in C. See Chapter 9 “Using GDB with Different
Languages,” page 81, for information on how to use expressions in other
languages.

In this section, we discuss operators that you can use in GDB expres-
sions regardless of your programming language.

Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer so as to examine a structure at
that address in memory.

24 October 1995 63

Debugging with GDB

GDB supports these operators in addition to those of programming
languages:

@ ‘@’ is a binary operator for treating parts of memory as ar-
rays. See Section 8.3 “Artificial arrays,” page 65, for more
information.

:: ‘::’ allows you to specify a variable in terms of the file or func-
tion where it is defined. See Section 8.2 “Program variables,”
page 64.

{type} addr
Refers to an object of type type stored at address addr in
memory. addr may be any expression whose value is an inte-
ger or pointer (but parentheses are required around binary
operators, just as in a cast). This construct is allowed re-
gardless of what kind of data is normally supposed to reside
at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable
in your program.

Variables in expressions are understood in the selected stack frame
(see Section 6.3 “Selecting a frame,” page 53); they must either be global
(or static) or be visible according to the scope rules of the programming
language from the point of execution in that frame. This means that in
the function

foo (a)
int a;

{
bar (a);
{
int b = test ();
bar (b);

}
}

you can examine and use the variable a whenever your program is ex-
ecuting within the function foo, but you can only use or examine the
variable b while your program is executing inside the block where b is
declared.

There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is not
in this file. But it is possible to have more than one such variable or
function with the same name (in different source files). If that happens,

64 24 October 1995

Chapter 8: Examining Data

referring to that name has unpredictable effects. If you wish, you can
specify a static variable in a particular function or file, using the colon-
colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static variable.
In the case of file names, you can use quotes to make sure GDB parses
the file name as a single word—for example, to print a global value of x
defined in ‘f2.c’:

(gdb) p ’f2.c’::x

This use of ‘::’ is very rarely in conflict with the very similar use
of the same notation in C++. GDB also supports use of the C++ scope
resolution operator in GDB expressions.

Warning: Occasionally, a local variable may appear to have the
wrong value at certain points in a function—just after entry to
a new scope, and just before exit.

You may see this problem when you are stepping by machine instruc-
tions. This is because on most machines, it takes more than one in-
struction to set up a stack frame (including local variable definitions); if
you are stepping by machine instructions, variables may appear to have
the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack
frame; after you begin stepping through that group of instructions, local
variable definitions may be gone.

8.3 Artificial arrays

It is often useful to print out several successive objects of the same
type in memory; a section of an array, or an array of dynamically deter-
mined size for which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as an
artificial array, using the binary operator ‘@’. The left operand of ‘@’
should be the first element of the desired array, as an individual object.
The right operand should be the desired length of the array. The result
is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes
from bytes of memory immediately following those that hold the first
element, and so on. Here is an example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with
p *array@len

24 October 1995 65

Debugging with GDB

The left operand of ‘@’ must reside in memory. Array values made with
‘@’ in this way behave just like other arrays in terms of subscripting, and
are coerced to pointers when used in expressions. Artificial arrays most
often appear in expressions via the value history (see Section 8.8 “Value
history,” page 76), after printing one out.

Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent—for example, if you are interested in the values of
pointers in an array. One useful work-around in this situation is to use a
convenience variable (see Section 8.9 “Convenience variables,” page 77)
as a counter in an expression that prints the first interesting value, and
then repeat that expression via RET. For instance, suppose you have an
array dtab of pointers to structures, and you are interested in the values
of a field fv in each structure. Here is an example of what you might
type:

set $i = 0
p dtab[$i++]->fv
RET
RET
...

8.4 Output formats

By default, GDB prints a value according to its data type. Sometimes
this is not what you want. For example, you might want to print a
number in hex, or a pointer in decimal. Or you might want to view data
in memory at a certain address as a character string or as an instruction.
To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value
already computed. This is done by starting the arguments of the print
command with a slash and a format letter. The format letters supported
are:

x Regard the bits of the value as an integer, and print the
integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary. The letter ‘t’ stands for “two”.1

1 ‘b’ cannot be used because these format letters are also used with the
x command, where ‘b’ stands for “byte”; see Section 8.5 “Examining
memory,” page 67.

66 24 October 1995

Chapter 8: Examining Data

a Print as an address, both absolute in hexadecimal and as an
offset from the nearest preceding symbol. You can use this
format used to discover where (in what function) an unknown
address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a floating point number and
print using typical floating point syntax.

For example, to print the program counter in hex (see Section 8.10
“Registers,” page 78), type

p/x $pc

Note that no space is required before the slash; this is because command
names in GDB cannot contain a slash.

To reprint the last value in the value history with a different format,
you can use the print command with just a format and no expression.
For example, ‘p/x’ reprints the last value in hex.

8.5 Examining memory

You can use the command x (for “examine”) to examine memory in
any of several formats, independently of your program’s data types.

x/nfu addr
x addr
x Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory
to display and how to format it; addr is an expression giving the address
where you want to start displaying memory. If you use defaults for
nfu, you need not type the slash ‘/’. Several commands set convenient
defaults for addr.

n, the repeat count
The repeat count is a decimal integer; the default is 1. It
specifies how much memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, or
‘s’ (null-terminated string) or ‘i’ (machine instruction). The
default is ‘x’ (hexadecimal) initially, or the format from the
last time you used either x or print.

24 October 1995 67

Debugging with GDB

u, the unit size
The unit size is any of

b Bytes.

h Halfwords (two bytes).

w Words (four bytes). This is the initial default.

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes
the default unit the next time you use x. (For the ‘s’ and ‘i’
formats, the unit size is ignored and is normally not written.)

addr, starting display address
addr is the address where you want GDB to begin display-
ing memory. The expression need not have a pointer value
(though it may); it is always interpreted as an integer ad-
dress of a byte of memory. See Section 8.1 “Expressions,”
page 63, for more information on expressions. The default
for addr is usually just after the last address examined—but
several other commands also set the default address: info
breakpoints (to the address of the last breakpoint listed),
info line (to the starting address of a line), and print (if
you use it to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords
(h) of memory, formatted as unsigned decimal integers (‘u’), starting at
address 0x54320. ‘x/4xw $sp’ prints the four words (‘w’) of memory above
the stack pointer (here, ‘$sp’; see Section 8.10 “Registers,” page 78) in
hexadecimal (‘x’).

Since the letters indicating unit sizes are all distinct from the letters
specifying output formats, you do not have to remember whether unit
size or format comes first; either order works. The output specifications
‘4xw’ and ‘4wx’ mean exactly the same thing. (However, the count n must
come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you
might still want to use a count n; for example, ‘3i’ specifies that you
want to see three machine instructions, including any operands. The
command disassemble gives an alternative way of inspecting machine
instructions; see Section 7.4 “Source and machine code,” page 60.

All the defaults for the arguments to x are designed to make it easy
to continue scanning memory with minimal specifications each time you
use x. For example, after you have inspected three machine instructions
with ‘x/3i addr’, you can inspect the next seven with just ‘x/7’. If you
use RET to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

68 24 October 1995

Chapter 8: Examining Data

The addresses and contents printed by the x command are not saved
in the value history because there is often too much of them and they
would get in the way. Instead, GDB makes these values available for
subsequent use in expressions as values of the convenience variables $_
and $__. After an x command, the last address examined is available for
use in expressions in the convenience variable $_. The contents of that
address, as examined, are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of output.

8.6 Automatic display

If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the automatic display
list so that GDB prints its value each time your program stops. Each
expression added to the list is given a number to identify it; to remove an
expression from the list, you specify that number. The automatic display
looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values.
As with displays you request manually using x or print, you can specify
the output format you prefer; in fact, display decides whether to use
print or x depending on how elaborate your format specification is—it
uses x if you specify a unit size, or one of the two formats (‘i’ and ‘s’) that
are only supported by x; otherwise it uses print.

display exp
Add the expression exp to the list of expressions to display
each time your program stops. See Section 8.1 “Expressions,”
page 63.
display does not repeat if you press RET again after using it.

display/fmt exp
For fmt specifying only a display format and not a size or
count, add the expression exp to the auto-display list but
arrange to display it each time in the specified format fmt.
See Section 8.4 “Output formats,” page 66.

display/fmt addr
For fmt ‘i’ or ‘s’, or including a unit-size or a number of units,
add the expression addr as a memory address to be examined
each time your program stops. Examining means in effect

24 October 1995 69

Debugging with GDB

doing ‘x/fmt addr’. See Section 8.5 “Examining memory,”
page 67.

For example, ‘display/i $pc’ can be helpful, to see the machine in-
struction about to be executed each time execution stops (‘$pc’ is a
common name for the program counter; see Section 8.10 “Registers,”
page 78).

undisplay dnums...
delete display dnums...

Remove item numbers dnums from the list of expressions to
display.
undisplay does not repeat if you press RET after using it.
(Otherwise you would just get the error ‘No display number
...’.)

disable display dnums...
Disable the display of item numbers dnums. A disabled dis-
play item is not printed automatically, but is not forgotten.
It may be enabled again later.

enable display dnums...
Enable display of item numbers dnums. It becomes effective
once again in auto display of its expression, until you specify
otherwise.

display Display the current values of the expressions on the list, just
as is done when your program stops.

info display
Print the list of expressions previously set up to display auto-
matically, each one with its item number, but without show-
ing the values. This includes disabled expressions, which are
marked as such. It also includes expressions which would
not be displayed right now because they refer to automatic
variables not currently available.

If a display expression refers to local variables, then it does not make
sense outside the lexical context for which it was set up. Such an ex-
pression is disabled when execution enters a context where one of its
variables is not defined. For example, if you give the command display
last_char while inside a function with an argument last_char, GDB
displays this argument while your program continues to stop inside that
function. When it stops elsewhere—where there is no variable last_
char—the display is disabled automatically. The next time your pro-
gram stops where last_char is meaningful, you can enable the display
expression once again.

70 24 October 1995

Chapter 8: Examining Data

8.7 Print settings

GDB provides the following ways to control how arrays, structures,
and symbols are printed.
These settings are useful for debugging programs in any language:

set print address
set print address on

GDB prints memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and so
forth, even when it also displays the contents of those ad-
dresses. The default is on. For example, this is what a stack
frame display looks like, with set print address on:

(gdb) f

#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530

530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents. For
example, this is the same stack frame displayed with set
print address off:

(gdb) set print addr off

(gdb) f

#0 set_quotes (lq="<<", rq=">>") at input.c:530

530 if (lquote != def_lquote)

You can use ‘set print address off’ to eliminate all machine
dependent displays from the GDB interface. For example,
with print address off, you should get the same text for
backtraces on all machines—whether or not they involve
pointer arguments.

show print address
Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest
earlier symbol plus an offset. If that symbol does not uniquely identify
the address (for example, it is a name whose scope is a single source file),
you may need to disambiguate. One way to do this is with info line,
for example ‘info line *0x4537’. Alternately, you can set GDB to print
the source file and line number when it prints a symbolic address:

set print symbol-filename on
Tell GDB to print the source file name and line number of a
symbol in the symbolic form of an address.

24 October 1995 71

Debugging with GDB

set print symbol-filename off
Do not print source file name and line number of a symbol.
This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and
line number of a symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and
line numbers is when disassembling code; GDB shows you the line num-
ber and source file that corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being
printed is reasonably close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Tell GDB to only display the symbolic form of an address if
the offset between the closest earlier symbol and the address
is less than max-offset. The default is 0, which means to
always print the symbolic form of an address, if any symbol
precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a
symbolic address.

Sometimes GDB can tell you more about an address if it does an
extensive search of its symbol information. The default is to provide a
quick symbolic display that is usually correct, but which may not give
the most useful answer when working in some object file formats. If you
are not getting the information you need, try:

set print fast-symbolic-addr off
Search all symbol information when displaying an address
symbolically. This setting may display more information
about static variables, for example, but also takes longer.

set print fast-symbolic-addr

set print fast-symbolic-addr on
Search only the “minimal symbol information” when display-
ing symbolic information about an address. This is the de-
fault.

show print fast-symbolic-addr
Ask whether GDB is using a fast or slow method of printing
symbolic address.

If you have a pointer and you are not sure where it points, try ‘set
print symbol-filename on’ and ‘set print fast-symbolic-addr off’.

72 24 October 1995

Chapter 8: Examining Data

Then you can determine the name and source file location of the vari-
able where it points, using ‘p/a pointer’. This interprets the address in
symbolic form. For example, here GDB shows that a variable ptt points
at another variable t, defined in ‘hi2.c’:

(gdb) set print fast-symbolic-addr off
(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, ‘p/a’ does
not show the symbol name and filename of the referent, even
with the appropriate set print options turned on.

Other settings control how different kinds of objects are printed:

set print array
set print array on

Pretty-print arrays. This format is more convenient to read,
but uses more space. The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for
displaying arrays.

set print elements number-of-elements
If GDB is printing a large array, it stops printing after it
has printed the number of elements set by the set print
elements command. This limit also applies to the display of
strings. Setting the number of elements to zero means that
the printing is unlimited.

show print elements
Display the number of elements of a large array that GDB
prints before losing patience.

set print pretty on
Cause GDB to print structures in an indented format with
one member per line, like this:

$1 = {

next = 0x0,

flags = {

sweet = 1,

sour = 1

},

meat = 0x54 "Pork"

}

24 October 1995 73

Debugging with GDB

set print pretty off
Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \

meat = 0x54 "Pork"}

This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set,
GDB displays any eight-bit characters (in strings or charac-
ter values) using the notation \nnn. This setting is best if you
are working in English (ascii) and you use the high-order bit
of characters as a marker or “meta” bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more
international character sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit charac-
ters.

set print union on
Tell GDB to print unions which are contained in structures.
This is the default setting.

set print union off
Tell GDB not to print unions which are contained in struc-
tures.

show print union
Ask GDB whether or not it will print unions which are con-
tained in structures.
For example, given the declarations

typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly}

Bug_forms;

struct thing {
Species it;
union {
Tree_forms tree;
Bug_forms bug;

} form;
};

struct thing foo = {Tree, {Acorn}};

74 24 October 1995

Chapter 8: Examining Data

with set print union on in effect ‘p foo’ would print
$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect it would print
$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle
set print demangle on

Print C++ names in their source form rather than in the
encoded (“mangled”) form passed to the assembler and linker
for type-safe linkage. The default is ‘on’.

show print demangle
Show whether C++ names are printed in mangled or deman-
gled form.

set print asm-demangle
set print asm-demangle on

Print C++ names in their source form rather than their man-
gled form, even in assembler code printouts such as instruc-
tion disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in
mangled or demangled form.

set demangle-style style
Choose among several encoding schemes used by different
compilers to represent C++ names. The choices for style are
currently:

auto Allow GDB to choose a decoding style by inspect-
ing your program.

gnu Decode based on the GNU C++ compiler (g++) en-
coding algorithm.

lucid Decode based on the Lucid C++ compiler (lcc)
encoding algorithm.

arm Decode using the algorithm in the C++ Anno-
tated Reference Manual. Warning: this setting
alone is not sufficient to allow debugging cfront-
generated executables. GDB would require fur-
ther enhancement to permit that.

show demangle-style
Display the encoding style currently in use for decoding C++
symbols.

24 October 1995 75

Debugging with GDB

set print object
set print object on

When displaying a pointer to an object, identify the actual
(derived) type of the object rather than the declared type,
using the virtual function table.

set print object off
Display only the declared type of objects, without reference
to the virtual function table. This is the default setting.

show print object
Show whether actual, or declared, object types are displayed.

set print vtbl
set print vtbl on

Pretty print C++ virtual function tables. The default is off.

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl
Show whether C++ virtual function tables are pretty printed,
or not.

8.8 Value history

Values printed by the print command are saved in the GDB value
history so that you can refer to them in other expressions. Values are
kept until the symbol table is re-read or discarded (for example with the
file or symbol-file commands). When the symbol table changes, the
value history is discarded, since the values may contain pointers back to
the types defined in the symbol table.

The values printed are given history numbers by which you can refer
to them. These are successive integers starting with one. print shows
you the history number assigned to a value by printing ‘$num = ’ before
the value; here num is the history number.

To refer to any previous value, use ‘$’ followed by the value’s history
number. The way print labels its output is designed to remind you of
this. Just $ refers to the most recent value in the history, and $$ refers
to the value before that. $$n refers to the nth value from the end; $$2 is
the value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent
to $.

For example, suppose you have just printed a pointer to a structure
and want to see the contents of the structure. It suffices to type

p *$

76 24 October 1995

Chapter 8: Examining Data

If you have a chain of structures where the component next points to
the next one, you can print the contents of the next one with this:

p *$.next

You can print successive links in the chain by repeating this command—
which you can do by just typing RET.

Note that the history records values, not expressions. If the value of
x is 4 and you type these commands:

print x
set x=5

then the value recorded in the value history by the print command
remains 4 even though the value of x has changed.

show values
Print the last ten values in the value history, with their item
numbers. This is like ‘p $$9’ repeated ten times, except that
show values does not change the history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed. If
no more values are available, produces no display.

Pressing RET to repeat show values n has exactly the same effect as
‘show values +’.

8.9 Convenience variables

GDB provides convenience variables that you can use within GDB to
hold on to a value and refer to it later. These variables exist entirely
within GDB; they are not part of your program, and setting a convenience
variable has no direct effect on further execution of your program. That
is why you can use them freely.

Convenience variables are prefixed with ‘$’. Any name preceded by ‘$’
can be used for a convenience variable, unless it is one of the predefined
machine-specific register names (see Section 8.10 “Registers,” page 78).
(Value history references, in contrast, are numbers preceded by ‘$’. See
Section 8.8 “Value history,” page 76.)

You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program. For exam-
ple:

set $foo = *object_ptr

24 October 1995 77

Debugging with GDB

would save in $foo the value contained in the object pointed to by
object_ptr.

Using a convenience variable for the first time creates it, but its
value is void until you assign a new value. You can alter the value with
another assignment at any time.

Convenience variables have no fixed types. You can assign a conve-
nience variable any type of value, including structures and arrays, even
if that variable already has a value of a different type. The convenience
variable, when used as an expression, has the type of its current value.

show convenience
Print a list of convenience variables used so far, and their
values. Abbreviated show conv.

One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced. For example, to print a field
from successive elements of an array of structures:

set $i = 0
print bar[$i++]->contents
. . . repeat that command by typing RET.

Some convenience variables are created automatically by GDB and
given values likely to be useful.

$_ The variable $_ is automatically set by the x command to the
last address examined (see Section 8.5 “Examining memory,”
page 67). Other commands which provide a default address
for x to examine also set $_ to that address; these commands
include info line and info breakpoint. The type of $_ is
void * except when set by the x command, in which case it
is a pointer to the type of $__.

$__ The variable $__ is automatically set by the x command to
the value found in the last address examined. Its type is
chosen to match the format in which the data was printed.

8.10 Registers

You can refer to machine register contents, in expressions, as vari-
ables with names starting with ‘$’. The names of registers are different
for each machine; use info registers to see the names used on your
machine.

info registers
Print the names and values of all registers except floating-
point registers (in the selected stack frame).

78 24 October 1995

Chapter 8: Examining Data

info all-registers
Print the names and values of all registers, including
floating-point registers.

info registers regname ...
Print the relativized value of each specified register regname.
regname may be any register name valid on the machine you
are using, with or without the initial ‘$’.

GDB has four “standard” register names that are available (in ex-
pressions) on most machines—whenever they do not conflict with an
architecture’s canonical mnemonics for registers. The register names
$pc and $sp are used for the program counter register and the stack
pointer. $fp is used for a register that contains a pointer to the current
stack frame, and $ps is used for a register that contains the processor
status. For example, you could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with
x/i $pc

or add four to the stack pointer2 with
set $sp += 4

Whenever possible, these four standard register names are avail-
able on your machine even though the machine has different canonical
mnemonics, so long as there is no conflict. The info registers com-
mand shows the canonical names. For example, on the SPARC, info
registers displays the processor status register as $psr but you can
also refer to it as $ps.

GDB always considers the contents of an ordinary register as an in-
teger when the register is examined in this way. Some machines have
special registers which can hold nothing but floating point; these regis-
ters are considered to have floating point values. There is no way to refer
to the contents of an ordinary register as floating point value (although
you can print it as a floating point value with ‘print/f $regname’).

Some registers have distinct “raw” and “virtual” data formats. This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees. For example, the registers of the 68881 floating point coprocessor

2 This is a way of removing one word from the stack, on machines where
stacks grow downward in memory (most machines, nowadays). This
assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames
off the stack, regardless of machine architecture, use return; see
Section 11.4 “Returning from a function,” page 105.

24 October 1995 79

Debugging with GDB

are always saved in “extended” (raw) format, but all C programs expect
to work with “double” (virtual) format. In such cases, GDB normally
works with the virtual format only (the format that makes sense for
your program), but the info registers command prints the data in
both formats.

Normally, register values are relative to the selected stack frame
(see Section 6.3 “Selecting a frame,” page 53). This means that you get
the value that the register would contain if all stack frames farther in
were exited and their saved registers restored. In order to see the true
contents of hardware registers, you must select the innermost frame
(with ‘frame 0’).

However, GDB must deduce where registers are saved, from the ma-
chine code generated by your compiler. If some registers are not saved,
or if GDB is unable to locate the saved registers, the selected stack frame
makes no difference.

set rstack_high_address address
On AMD 29000 family processors, registers are saved in a
separate “register stack”. There is no way for GDB to deter-
mine the extent of this stack. Normally, GDB just assumes
that the stack is “large enough”. This may result in GDB
referencing memory locations that do not exist. If neces-
sary, you can get around this problem by specifying the end-
ing address of the register stack with the set rstack_high_
address command. The argument should be an address,
which you probably want to precede with ‘0x’ to specify in
hexadecimal.

show rstack_high_address
Display the current limit of the register stack, on AMD 29000
family processors.

8.11 Floating point hardware

Depending on the host machine architecture, GDB may be able to give
you more information about the status of the floating point hardware.

info float
Display hardware-dependent information about the floating
point unit. The exact contents and layout vary depending on
the floating point chip; on some platforms, ‘info float’ is not
available at all.

80 24 October 1995

Chapter 9: Using GDB with Different Languages

9 Using GDB with Different Languages

Although programming languages generally have common aspects,
they are rarely expressed in the same manner. For instance, in ANSI
C, dereferencing a pointer p is accomplished by *p, but in Modula-2, it
is accomplished by pˆ. Values can also be represented (and displayed)
differently. Hex numbers in C are written like ‘0x1ae’, while in Modula-2
they appear as ‘1AEH’.

Language-specific information is built into GDB for some languages,
allowing you to express operations like the above in your program’s na-
tive language, and allowing GDB to output values in a manner consistent
with the syntax of your program’s native language. The language you
use to build expressions, called the working language, can be selected
manually, or GDB can set it automatically.

9.1 Switching between source languages

There are two ways to control the working language—either have
GDB set it automatically, or select it manually yourself. You can use the
set language command for either purpose. On startup, GDB defaults to
setting the language automatically.

9.1.1 Setting the working language

If you allow GDB to set the language automatically, expressions are
interpreted the same way in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the
command ‘set language lang’, where lang is the name of a language,
such as c or modula-2. For a list of the supported languages, type ‘set
language’.

Setting the language manually prevents GDB from updating the
working language automatically. This can lead to confusion if you try
to debug a program when the working language is not the same as the
source language, when an expression is acceptable to both languages—
but means different things. For instance, if the current source file were
written in C, and GDB was parsing Modula-2, a command such as:

print a = b + c

might not have the effect you intended. In C, this means to add b and
c and place the result in a. The result printed would be the value of a.
In Modula-2, this means to compare a to the result of b+c, yielding a
BOOLEAN value.

24 October 1995 81

Debugging with GDB

9.1.2 Having GDB infer the source language

To have GDB set the working language automatically, use ‘set
language local’ or ‘set language auto’. GDB then infers the language
that a program was written in by looking at the name of its source files,
and examining their extensions:

‘*.mod’ Modula-2 source file

‘*.c’ C source file

‘*.C’
‘*.cc’ C++ source file

This information is recorded for each function or procedure in a source
file. When your program stops in a frame (usually by encountering a
breakpoint), GDB sets the working language to the language recorded
for the function in that frame. If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was defined
in a source file that does not have a recognized extension), the current
working language is not changed, and GDB issues a warning.

This may not seem necessary for most programs, which are writ-
ten entirely in one source language. However, program modules and
libraries written in one source language can be used by a main program
written in a different source language. Using ‘set language auto’ in this
case frees you from having to set the working language manually.

9.2 Displaying the language

The following commands help you find out which language is the
working language, and also what language source files were written in.

show language
Display the current working language. This is the language
you can use with commands such as print to build and com-
pute expressions that may involve variables in your program.

info frame
Among the other information listed here (see Section 6.4 “In-
formation about a frame,” page 54) is the source language for
this frame. This language becomes the working language if
you use an identifier from this frame.

info source
Among the other information listed here (see Chapter 10 “Ex-
amining the Symbol Table,” page 99) is the source language
of this source file.

82 24 October 1995

Chapter 9: Using GDB with Different Languages

9.3 Type and range checking

Warning: In this release, the GDB commands for type and range
checking are included, but they do not yet have any effect. This
section documents the intended facilities.

Some languages are designed to guard you against making seemingly
common errors through a series of compile- and run-time checks. These
include checking the type of arguments to functions and operators, and
making sure mathematical overflows are caught at run time. Checks
such as these help to ensure a program’s correctness once it has been
compiled by eliminating type mismatches, and providing active checks
for range errors when your program is running.

GDB can check for conditions like the above if you wish. Although
GDB does not check the statements in your program, it can check ex-
pressions entered directly into GDB for evaluation via the print com-
mand, for example. As with the working language, GDB can also decide
whether or not to check automatically based on your program’s source
language. See Section 9.4 “Supported languages,” page 85, for the de-
fault settings of supported languages.

9.3.1 An overview of type checking

Some languages, such as Modula-2, are strongly typed, meaning that
the arguments to operators and functions have to be of the correct type,
otherwise an error occurs. These checks prevent type mismatch errors
from ever causing any run-time problems. For example,

1 + 2) 3
but

error 1 + 2.3

The second example fails because the CARDINAL 1 is not type-
compatible with the REAL 2.3.

For expressions you use in GDB commands, you can tell the GDB
type checker to skip checking; to treat any mismatches as errors and
abandon the expression; or only issue warnings when type mismatches
occur, but evaluate the expression anyway. When you choose the last
of these, GDB evaluates expressions like the second example above, but
also issues a warning.

Even though you may turn type checking off, other type-based reasons
may prevent GDB from evaluating an expression. For instance, GDB
does not know how to add an int and a struct foo. These particular
type errors have nothing to do with the language in use, and usually
arise from expressions, such as the one described above, which make
little sense to evaluate anyway.

24 October 1995 83

Debugging with GDB

Each language defines to what degree it is strict about type. For
instance, both Modula-2 and C require the arguments to arithmetical
operators to be numbers. In C, enumerated types and pointers can be
represented as numbers, so that they are valid arguments to mathe-
matical operators. See Section 9.4 “Supported languages,” page 85, for
further details on specific languages.

GDB provides some additional commands for controlling the type
checker:

set check type auto
Set type checking on or off based on the current working
language. See Section 9.4 “Supported languages,” page 85,
for the default settings for each language.

set check type on
set check type off

Set type checking on or off, overriding the default setting for
the current working language. Issue a warning if the setting
does not match the language default. If any type mismatches
occur in evaluating an expression while typechecking is on,
GDB prints a message and aborts evaluation of the expres-
sion.

set check type warn
Cause the type checker to issue warnings, but to always at-
tempt to evaluate the expression. Evaluating the expression
may still be impossible for other reasons. For example, GDB
cannot add numbers and structures.

show type
Show the current setting of the type checker, and whether or
not GDB is setting it automatically.

9.3.2 An overview of range checking

In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks. Such range
checking is meant to ensure program correctness by making sure com-
putations do not overflow, or indices on an array element access do not
exceed the bounds of the array.

For expressions you use in GDB commands, you can tell GDB to treat
range errors in one of three ways: ignore them, always treat them as
errors and abandon the expression, or issue warnings but evaluate the
expression anyway.

A range error can result from numerical overflow, from exceeding an
array index bound, or when you type a constant that is not a member of

84 24 October 1995

Chapter 9: Using GDB with Different Languages

any type. Some languages, however, do not treat overflows as an error.
In many implementations of C, mathematical overflow causes the result
to “wrap around” to lower values—for example, if m is the largest integer
value, and s is the smallest, then

m + 1) s

This, too, is specific to individual languages, and in some cases spe-
cific to individual compilers or machines. See Section 9.4 “Supported
languages,” page 85, for further details on specific languages.

GDB provides some additional commands for controlling the range
checker:

set check range auto
Set range checking on or off based on the current working
language. See Section 9.4 “Supported languages,” page 85,
for the default settings for each language.

set check range on
set check range off

Set range checking on or off, overriding the default setting
for the current working language. A warning is issued if
the setting does not match the language default. If a range
error occurs, then a message is printed and evaluation of the
expression is aborted.

set check range warn
Output messages when the GDB range checker detects a
range error, but attempt to evaluate the expression anyway.
Evaluating the expression may still be impossible for other
reasons, such as accessing memory that the process does not
own (a typical example from many Unix systems).

show range
Show the current setting of the range checker, and whether
or not it is being set automatically by GDB.

9.4 Supported languages

GDB 4 supports C, C++, and Modula-2. Some GDB features may be
used in expressions regardless of the language you use: the GDB @ and ::
operators, and the ‘{type}addr’ construct (see Section 8.1 “Expressions,”
page 63) can be used with the constructs of any supported language.

The following sections detail to what degree each source language is
supported by GDB. These sections are not meant to be language tutorials
or references, but serve only as a reference guide to what the GDB
expression parser accepts, and what input and output formats should

24 October 1995 85

Debugging with GDB

look like for different languages. There are many good books written on
each of these languages; please look to these for a language reference or
tutorial.

9.4.1 C and C++

Since C and C++ are so closely related, many features of GDB apply
to both languages. Whenever this is the case, we discuss both languages
together.

The C++ debugging facilities are jointly implemented by the GNU
C++ compiler and GDB. Therefore, to debug your C++ code effectively,
you must compile your C++ programs with the GNU C++ compiler, g++.

For best results when debugging C++ programs, use the stabs debug-
ging format. You can select that format explicitly with the g++ command-
line options ‘-gstabs’ or ‘-gstabs+’. See section “Options for Debugging
Your Program or GNU CC” in Using GNU CC, for more information.

9.4.1.1 C and C++ operators

Operators must be defined on values of specific types. For instance,
+ is defined on numbers, but not on structures. Operators are often
defined on groups of types.

For the purposes of C and C++, the following definitions hold:
� Integral types include int with any of its storage-class specifiers;

char; and enum.
� Floating-point types include float and double.
� Pointer types include all types defined as (type *).
� Scalar types include all of the above.

The following operators are supported. They are listed here in order of
increasing precedence:

, The comma or sequencing operator. Expressions in a comma-
separated list are evaluated from left to right, with the result
of the entire expression being the last expression evaluated.

= Assignment. The value of an assignment expression is the
value assigned. Defined on scalar types.

op= Used in an expression of the form a op= b, and translated to
a = a op b. op= and = have the same precendence. op is any
one of the operators |, ˆ, &, <<, >>, +, -, *, /, %.

?: The ternary operator. a ? b : c can be thought of as: if a then
b else c. a should be of an integral type.

86 24 October 1995

Chapter 9: Using GDB with Different Languages

|| Logical or. Defined on integral types.

&& Logical and. Defined on integral types.

| Bitwise or. Defined on integral types.

ˆ Bitwise exclusive-or. Defined on integral types.

& Bitwise and. Defined on integral types.

==, != Equality and inequality. Defined on scalar types. The value
of these expressions is 0 for false and non-zero for true.

<, >, <=, >=
Less than, greater than, less than or equal, greater than or
equal. Defined on scalar types. The value of these expres-
sions is 0 for false and non-zero for true.

<<, >> left shift, and right shift. Defined on integral types.

@ The GDB “artificial array” operator (see Section 8.1 “Expres-
sions,” page 63).

+, - Addition and subtraction. Defined on integral types, floating-
point types and pointer types.

*, /, % Multiplication, division, and modulus. Multiplication and di-
vision are defined on integral and floating-point types. Mod-
ulus is defined on integral types.

++, -- Increment and decrement. When appearing before a vari-
able, the operation is performed before the variable is used in
an expression; when appearing after it, the variable’s value
is used before the operation takes place.

* Pointer dereferencing. Defined on pointer types. Same prece-
dence as ++.

& Address operator. Defined on variables. Same precedence as
++.
For debugging C++, GDB implements a use of ‘&’ beyond
what is allowed in the C++ language itself: you can use
‘&(&ref)’ (or, if you prefer, simply ‘&&ref’) to examine the ad-
dress where a C++ reference variable (declared with ‘&ref’)
is stored.

- Negative. Defined on integral and floating-point types. Same
precedence as ++.

! Logical negation. Defined on integral types. Same prece-
dence as ++.

24 October 1995 87

Debugging with GDB

˜ Bitwise complement operator. Defined on integral types.
Same precedence as ++.

., -> Structure member, and pointer-to-structure member. For
convenience, GDB regards the two as equivalent, choosing
whether to dereference a pointer based on the stored type
information. Defined on struct and union data.

[] Array indexing. a[i] is defined as *(a+i). Same precedence
as ->.

() Function parameter list. Same precedence as ->.

:: C++ scope resolution operator. Defined on struct, union,
and class types.

:: Doubled colons also represent the GDB scope operator (see
Section 8.1 “Expressions,” page 63). Same precedence as ::,
above.

9.4.1.2 C and C++ constants

GDB allows you to express the constants of C and C++ in the following
ways:
� Integer constants are a sequence of digits. Octal constants are speci-

fied by a leading ‘0’ (ie. zero), and hexadecimal constants by a leading
‘0x’ or ‘0X’. Constants may also end with a letter ‘l’, specifying that
the constant should be treated as a long value.

� Floating point constants are a sequence of digits, followed by a dec-
imal point, followed by a sequence of digits, and optionally followed
by an exponent. An exponent is of the form: ‘e[[+]|-]nnn’, where
nnn is another sequence of digits. The ‘+’ is optional for positive
exponents.

� Enumerated constants consist of enumerated identifiers, or their
integral equivalents.

� Character constants are a single character surrounded by single
quotes (’), or a number—the ordinal value of the corresponding
character (usually its ASCII value). Within quotes, the single char-
acter may be represented by a letter or by escape sequences, which
are of the form ‘\nnn’, where nnn is the octal representation of the
character’s ordinal value; or of the form ‘\x’, where ‘x’ is a predefined
special character—for example, ‘\n’ for newline.

� String constants are a sequence of character constants surrounded
by double quotes (").

� Pointer constants are an integral value. You can also write pointers
to constants using the C operator ‘&’.

88 24 October 1995

Chapter 9: Using GDB with Different Languages

� Array constants are comma-separated lists surrounded by braces
‘{’ and ‘}’; for example, ‘{1,2,3}’ is a three-element array of inte-
gers, ‘{{1,2}, {3,4}, {5,6}}’ is a three-by-two array, and ‘{&"hi",
&"there", &"fred"}’ is a three-element array of pointers.

9.4.1.3 C++ expressions

GDB expression handling has a number of extensions to interpret a
significant subset of C++ expressions.

Warning: GDB can only debug C++ code if you compile with the
GNU C++ compiler. Moreover, C++ debugging depends on the
use of additional debugging information in the symbol table,
and thus requires special support. GDB has this support only
with the stabs debug format. In particular, if your compiler
generates a.out, MIPS ecoff, RS/6000 xcoff, or elf with stabs
extensions to the symbol table, these facilities are all available.
(With GNU CC, you can use the ‘-gstabs’ option to request stabs
debugging extensions explicitly.) Where the object code format
is standard coff or dwarf in elf, on the other hand, most of
the C++ support in GDB does not work.

1. Member function calls are allowed; you can use expressions like
count = aml->GetOriginal(x, y)

2. While a member function is active (in the selected stack frame),
your expressions have the same namespace available as the member
function; that is, GDB allows implicit references to the class instance
pointer this following the same rules as C++.

3. You can call overloaded functions; GDB resolves the function call to
the right definition, with one restriction—you must use arguments
of the type required by the function that you want to call. GDB does
not perform conversions requiring constructors or user-defined type
operators.

4. GDB understands variables declared as C++ references; you can
use them in expressions just as you do in C++ source—they are
automatically dereferenced.
In the parameter list shown when GDB displays a frame, the values
of reference variables are not displayed (unlike other variables); this
avoids clutter, since references are often used for large structures.
The address of a reference variable is always shown, unless you have
specified ‘set print address off’.

5. GDB supports the C++ name resolution operator ::—your expres-
sions can use it just as expressions in your program do. Since one
scope may be defined in another, you can use :: repeatedly if nec-
essary, for example in an expression like ‘scope1::scope2::name’.

24 October 1995 89

Debugging with GDB

GDB also allows resolving name scope by reference to source files,
in both C and C++ debugging (see Section 8.2 “Program variables,”
page 64).

9.4.1.4 C and C++ defaults

If you allow GDB to set type and range checking automatically, they
both default to off whenever the working language changes to C or C++.
This happens regardless of whether you, or GDB, selected the working
language.

If you allow GDB to set the language automatically, it sets the working
language to C or C++ on entering code compiled from a source file whose
name ends with ‘.c’, ‘.C’, or ‘.cc’. See Section 9.1.2 “Having GDB infer
the source language,” page 82, for further details.

9.4.1.5 C and C++ type and range checks

By default, when GDB parses C or C++ expressions, type checking
is not used. However, if you turn type checking on, GDB considers two
variables type equivalent if:
� The two variables are structured and have the same structure,

union, or enumerated tag.
� Two two variables have the same type name, or types that have been

declared equivalent through typedef.

Range checking, if turned on, is done on mathematical operations.
Array indices are not checked, since they are often used to index a pointer
that is not itself an array.

9.4.1.6 GDB and C

The set print union and show print union commands apply to the
union type. When set to ‘on’, any union that is inside a struct or class
is also printed. Otherwise, it appears as ‘{...}’.

The @ operator aids in the debugging of dynamic arrays, formed with
pointers and a memory allocation function. See Section 8.1 “Expres-
sions,” page 63.

9.4.1.7 GDB features for C++

Some GDB commands are particularly useful with C++, and some are
designed specifically for use with C++. Here is a summary:

90 24 October 1995

Chapter 9: Using GDB with Different Languages

breakpoint menus
When you want a breakpoint in a function whose name is
overloaded, GDB breakpoint menus help you specify which
function definition you want. See Section 5.1.8 “Breakpoint
menus,” page 43.

rbreak regex
Setting breakpoints using regular expressions is helpful for
setting breakpoints on overloaded functions that are not
members of any special classes. See Section 5.1.1 “Setting
breakpoints,” page 34.

catch exceptions
info catch

Debug C++ exception handling using these commands. See
Section 5.1.3 “Breakpoints and exceptions,” page 37.

ptype typename
Print inheritance relationships as well as other information
for type typename. See Chapter 10 “Examining the Symbol
Table,” page 99.

set print demangle
show print demangle
set print asm-demangle
show print asm-demangle

Control whether C++ symbols display in their source form,
both when displaying code as C++ source and when display-
ing disassemblies. See Section 8.7 “Print settings,” page 71.

set print object
show print object

Choose whether to print derived (actual) or declared types of
objects. See Section 8.7 “Print settings,” page 71.

set print vtbl
show print vtbl

Control the format for printing virtual function tables. See
Section 8.7 “Print settings,” page 71.

Overloaded symbol names
You can specify a particular definition of an overloaded sym-
bol, using the same notation that is used to declare such
symbols in C++: type symbol(types) rather than just sym-
bol. You can also use the GDB command-line word comple-
tion facilities to list the available choices, or to finish the type
list for you. See Section 3.2 “Command completion,” page 18,
for details on how to do this.

24 October 1995 91

Debugging with GDB

9.4.2 Modula-2

The extensions made to GDB to support Modula-2 only support output
from the GNU Modula-2 compiler (which is currently being developed).
Other Modula-2 compilers are not currently supported, and attempting
to debug executables produced by them is most likely to give an error as
GDB reads in the executable’s symbol table.

9.4.2.1 Operators

Operators must be defined on values of specific types. For instance,
+ is defined on numbers, but not on structures. Operators are often
defined on groups of types. For the purposes of Modula-2, the following
definitions hold:
� Integral types consist of INTEGER, CARDINAL, and their subranges.
� Character types consist of CHAR and its subranges.
� Floating-point types consist of REAL.
� Pointer types consist of anything declared as POINTER TO type.
� Scalar types consist of all of the above.
� Set types consist of SET and BITSET types.
� Boolean types consist of BOOLEAN.

The following operators are supported, and appear in order of increasing
precedence:

, Function argument or array index separator.

:= Assignment. The value of var := value is value.

<, > Less than, greater than on integral, floating-point, or enu-
merated types.

<=, >= Less than, greater than, less than or equal to, greater than
or equal to on integral, floating-point and enumerated types,
or set inclusion on set types. Same precedence as <.

=, <>, # Equality and two ways of expressing inequality, valid on
scalar types. Same precedence as <. In GDB scripts, only
<> is available for inequality, since # conflicts with the script
comment character.

IN Set membership. Defined on set types and the types of their
members. Same precedence as <.

OR Boolean disjunction. Defined on boolean types.

AND, & Boolean conjuction. Defined on boolean types.

92 24 October 1995

Chapter 9: Using GDB with Different Languages

@ The GDB “artificial array” operator (see Section 8.1 “Expres-
sions,” page 63).

+, - Addition and subtraction on integral and floating-point
types, or union and difference on set types.

* Multiplication on integral and floating-point types, or set
intersection on set types.

/ Division on floating-point types, or symmetric set difference
on set types. Same precedence as *.

DIV, MOD Integer division and remainder. Defined on integral types.
Same precedence as *.

- Negative. Defined on INTEGER and REAL data.

ˆ Pointer dereferencing. Defined on pointer types.

NOT Boolean negation. Defined on boolean types. Same prece-
dence as ˆ.

. RECORD field selector. Defined on RECORD data. Same prece-
dence as ˆ.

[] Array indexing. Defined on ARRAY data. Same precedence as
ˆ.

() Procedure argument list. Defined on PROCEDURE objects.
Same precedence as ˆ.

::, . GDB and Modula-2 scope operators.

Warning: Sets and their operations are not yet supported, so
GDB treats the use of the operator IN, or the use of operators +,
-, *, /, =, , <>, #, <=, and >= on sets as an error.

9.4.2.2 Built-in functions and procedures

Modula-2 also makes available several built-in procedures and func-
tions. In describing these, the following metavariables are used:

a represents an ARRAY variable.

c represents a CHAR constant or variable.

i represents a variable or constant of integral type.

m represents an identifier that belongs to a set. Generally used
in the same function with the metavariable s. The type of s
should be SET OF mtype (where mtype is the type of m).

n represents a variable or constant of integral or floating-point
type.

24 October 1995 93

Debugging with GDB

r represents a variable or constant of floating-point type.

t represents a type.

v represents a variable.

x represents a variable or constant of one of many types. See
the explanation of the function for details.

All Modula-2 built-in procedures also return a result, described below.

ABS(n) Returns the absolute value of n.

CAP(c) If c is a lower case letter, it returns its upper case equivalent,
otherwise it returns its argument

CHR(i) Returns the character whose ordinal value is i.

DEC(v) Decrements the value in the variable v. Returns the new
value.

DEC(v,i) Decrements the value in the variable v by i. Returns the
new value.

EXCL(m,s)
Removes the element m from the set s. Returns the new set.

FLOAT(i) Returns the floating point equivalent of the integer i.

HIGH(a) Returns the index of the last member of a.

INC(v) Increments the value in the variable v. Returns the new
value.

INC(v,i) Increments the value in the variable v by i. Returns the new
value.

INCL(m,s)
Adds the element m to the set s if it is not already there.
Returns the new set.

MAX(t) Returns the maximum value of the type t.

MIN(t) Returns the minimum value of the type t.

ODD(i) Returns boolean TRUE if i is an odd number.

ORD(x) Returns the ordinal value of its argument. For example,
the ordinal value of a character is its ASCII value (on ma-
chines supporting the ASCII character set). x must be of an
ordered type, which include integral, character and enumer-
ated types.

SIZE(x) Returns the size of its argument. x can be a variable or a
type.

94 24 October 1995

Chapter 9: Using GDB with Different Languages

TRUNC(r) Returns the integral part of r.

VAL(t,i) Returns the member of the type t whose ordinal value is i.

Warning: Sets and their operations are not yet supported, so
GDB treats the use of procedures INCL and EXCL as an error.

9.4.2.3 Constants

GDB allows you to express the constants of Modula-2 in the following
ways:
� Integer constants are simply a sequence of digits. When used in

an expression, a constant is interpreted to be type-compatible with
the rest of the expression. Hexadecimal integers are specified by a
trailing ‘H’, and octal integers by a trailing ‘B’.

� Floating point constants appear as a sequence of digits, followed by a
decimal point and another sequence of digits. An optional exponent
can then be specified, in the form ‘E[+|-]nnn’, where ‘[+|-]nnn’ is
the desired exponent. All of the digits of the floating point constant
must be valid decimal (base 10) digits.

� Character constants consist of a single character enclosed by a pair
of like quotes, either single (’) or double ("). They may also be ex-
pressed by their ordinal value (their ASCII value, usually) followed
by a ‘C’.

� String constants consist of a sequence of characters enclosed by a
pair of like quotes, either single (’) or double ("). Escape sequences
in the style of C are also allowed. See Section 9.4.1.2 “C and C++
constants,” page 88, for a brief explanation of escape sequences.

� Enumerated constants consist of an enumerated identifier.
� Boolean constants consist of the identifiers TRUE and FALSE.
� Pointer constants consist of integral values only.
� Set constants are not yet supported.

9.4.2.4 Modula-2 defaults

If type and range checking are set automatically by GDB, they both
default to on whenever the working language changes to Modula-2. This
happens regardless of whether you, or GDB, selected the working lan-
guage.

If you allow GDB to set the language automatically, then entering
code compiled from a file whose name ends with ‘.mod’ sets the working
language to Modula-2. See Section 9.1.2 “Having GDB set the language
automatically,” page 82, for further details.

24 October 1995 95

Debugging with GDB

9.4.2.5 Deviations from standard Modula-2

A few changes have been made to make Modula-2 programs easier to
debug. This is done primarily via loosening its type strictness:
� Unlike in standard Modula-2, pointer constants can be formed by

integers. This allows you to modify pointer variables during de-
bugging. (In standard Modula-2, the actual address contained in a
pointer variable is hidden from you; it can only be modified through
direct assignment to another pointer variable or expression that
returned a pointer.)

� C escape sequences can be used in strings and characters to repre-
sent non-printable characters. GDB prints out strings with these
escape sequences embedded. Single non-printable characters are
printed using the ‘CHR(nnn)’ format.

� The assignment operator (:=) returns the value of its right-hand
argument.

� All built-in procedures both modify and return their argument.

9.4.2.6 Modula-2 type and range checks

Warning: in this release, GDB does not yet perform type or
range checking.

GDB considers two Modula-2 variables type equivalent if:
� They are of types that have been declared equivalent via a TYPE t1

= t2 statement
� They have been declared on the same line. (Note: This is true of the

GNU Modula-2 compiler, but it may not be true of other compilers.)

As long as type checking is enabled, any attempt to combine variables
whose types are not equivalent is an error.

Range checking is done on all mathematical operations, assignment,
array index bounds, and all built-in functions and procedures.

9.4.2.7 The scope operators :: and .

There are a few subtle differences between the Modula-2 scope oper-
ator (.) and the GDB scope operator (::). The two have similar syntax:

module . id
scope :: id

where scope is the name of a module or a procedure, module the name of
a module, and id is any declared identifier within your program, except
another module.

96 24 October 1995

Chapter 9: Using GDB with Different Languages

Using the :: operator makes GDB search the scope specified by scope
for the identifier id. If it is not found in the specified scope, then GDB
searches all scopes enclosing the one specified by scope.

Using the . operator makes GDB search the current scope for the
identifier specified by id that was imported from the definition module
specified by module. With this operator, it is an error if the identifier
id was not imported from definition module module, or if id is not an
identifier in module.

9.4.2.8 GDB and Modula-2

Some GDB commands have little use when debugging Modula-2 pro-
grams. Five subcommands of set print and show print apply specif-
ically to C and C++: ‘vtbl’, ‘demangle’, ‘asm-demangle’, ‘object’, and
‘union’. The first four apply to C++, and the last to the C union type,
which has no direct analogue in Modula-2.

The @ operator (see Section 8.1 “Expressions,” page 63), while avail-
able while using any language, is not useful with Modula-2. Its intent
is to aid the debugging of dynamic arrays, which cannot be created in
Modula-2 as they can in C or C++. However, because an address can be
specified by an integral constant, the construct ‘{type}adrexp’ is still
useful. (see Section 8.1 “Expressions,” page 63)

In GDB scripts, the Modula-2 inequality operator # is interpreted as
the beginning of a comment. Use <> instead.

24 October 1995 97

Debugging with GDB

98 24 October 1995

Chapter 10: Examining the Symbol Table

10 Examining the Symbol Table

The commands described in this section allow you to inquire about
the symbols (names of variables, functions and types) defined in your
program. This information is inherent in the text of your program and
does not change as your program executes. GDB finds it in your pro-
gram’s symbol table, in the file indicated when you started GDB (see
Section 2.1.1 “Choosing files,” page 12), or by one of the file-management
commands (see Section 12.1 “Commands to specify files,” page 107).

Occasionally, you may need to refer to symbols that contain unusual
characters, which GDB ordinarily treats as word delimiters. The most
frequent case is in referring to static variables in other source files (see
Section 8.2 “Program variables,” page 64). File names are recorded in
object files as debugging symbols, but GDB would ordinarily parse a
typical file name, like ‘foo.c’, as the three words ‘foo’ ‘.’ ‘c’. To allow
GDB to recognize ‘foo.c’ as a single symbol, enclose it in single quotes;
for example,

p ’foo.c’::x

looks up the value of x in the scope of the file ‘foo.c’.

info address symbol
Describe where the data for symbol is stored. For a register
variable, this says which register it is kept in. For a non-
register local variable, this prints the stack-frame offset at
which the variable is always stored.

Note the contrast with ‘print &symbol’, which does not work
at all for a register variable, and for a stack local variable
prints the exact address of the current instantiation of the
variable.

whatis exp
Print the data type of expression exp. exp is not actually
evaluated, and any side-effecting operations (such as assign-
ments or function calls) inside it do not take place. See Sec-
tion 8.1 “Expressions,” page 63.

whatis Print the data type of $, the last value in the value history.

ptype typename
Print a description of data type typename. typename
may be the name of a type, or for C code it may have
the form ‘class class-name’, ‘struct struct-tag’, ‘union
union-tag’ or ‘enum enum-tag’.

24 October 1995 99

Debugging with GDB

ptype exp
ptype Print a description of the type of expression exp. ptype dif-

fers from whatis by printing a detailed description, instead
of just the name of the type.
For example, for this variable declaration:

struct complex {double real; double imag;} v;

the two commands give this output:
(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {

double real;
double imag;

}

As with whatis, using ptype without an argument refers to
the type of $, the last value in the value history.

info types regexp
info types

Print a brief description of all types whose name matches
regexp (or all types in your program, if you supply no ar-
gument). Each complete typename is matched as though it
were a complete line; thus, ‘i type value’ gives information
on all types in your program whose name includes the string
value, but ‘i type ˆvalue$’ gives information only on types
whose complete name is value.
This command differs from ptype in two ways: first, like
whatis, it does not print a detailed description; second, it
lists all source files where a type is defined.

info source
Show the name of the current source file—that is, the
source file for the function containing the current point of
execution—and the language it was written in.

info sources
Print the names of all source files in your program for which
there is debugging information, organized into two lists: files
whose symbols have already been read, and files whose sym-
bols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose
names contain a match for regular expression regexp. Thus,

100 24 October 1995

Chapter 10: Examining the Symbol Table

‘info fun step’ finds all functions whose names include step;
‘info fun ˆstep’ finds those whose names start with step.

info variables
Print the names and data types of all variables that are de-
clared outside of functions (i.e., excluding local variables).

info variables regexp
Print the names and data types of all variables (except for
local variables) whose names contain a match for regular
expression regexp.

maint print symbols filename
maint print psymbols filename
maint print msymbols filename

Write a dump of debugging symbol data into the file file-
name. These commands are used to debug the GDB symbol-
reading code. Only symbols with debugging data are in-
cluded. If you use ‘maint print symbols’, GDB includes all
the symbols for which it has already collected full details:
that is, filename reflects symbols for only those files whose
symbols GDB has read. You can use the command info
sources to find out which files these are. If you use ‘maint
print psymbols’ instead, the dump shows information about
symbols that GDB only knows partially—that is, symbols
defined in files that GDB has skimmed, but not yet read
completely. Finally, ‘maint print msymbols’ dumps just the
minimal symbol information required for each object file from
which GDB has read some symbols. See Section 12.1 “Com-
mands to specify files,” page 107, for a discussion of how GDB
reads symbols (in the description of symbol-file).

24 October 1995 101

Debugging with GDB

102 24 October 1995

Chapter 11: Altering Execution

11 Altering Execution
Once you think you have found an error in your program, you might

want to find out for certain whether correcting the apparent error would
lead to correct results in the rest of the run. You can find the answer
by experiment, using the GDB features for altering execution of the
program.

For example, you can store new values into variables or memory
locations, give your program a signal, restart it at a different address, or
even return prematurely from a function to its caller.

11.1 Assignment to variables

To alter the value of a variable, evaluate an assignment expression.
See Section 8.1 “Expressions,” page 63. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the
assignment expression (which is 4). See Chapter 9 “Using GDB with
Different Languages,” page 81, for more information on operators in
supported languages.

If you are not interested in seeing the value of the assignment, use
the set command instead of the print command. set is really the same
as print except that the expression’s value is not printed and is not
put in the value history (see Section 8.8 “Value history,” page 76). The
expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears
identical to a set subcommand, use the set variable command instead
of just set. This command is identical to set except for its lack of
subcommands. For example, if your program has a variable width, you
get an error if you try to set a new value with just ‘set width=13’, because
GDB has the command set width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is ‘=47’. In order to actually set the
program’s variable width, use

(gdb) set var width=47

GDB allows more implicit conversions in assignments than C; you
can freely store an integer value into a pointer variable or vice versa,

24 October 1995 103

Debugging with GDB

and you can convert any structure to any other structure that is the
same length or shorter.

To store values into arbitrary places in memory, use the ‘{...}’ con-
struct to generate a value of specified type at a specified address (see
Section 8.1 “Expressions,” page 63). For example, {int}0x83040 refers
to memory location 0x83040 as an integer (which implies a certain size
and representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

11.2 Continuing at a different address

Ordinarily, when you continue your program, you do so at the place
where it stopped, with the continue command. You can instead continue
at an address of your own choosing, with the following commands:

jump linespec
Resume execution at line linespec. Execution stops again
immediately if there is a breakpoint there. See Section 7.1
“Printing source lines,” page 57, for a description of the dif-
ferent forms of linespec.
The jump command does not change the current stack frame,
or the stack pointer, or the contents of any memory location or
any register other than the program counter. If line linespec
is in a different function from the one currently executing, the
results may be bizarre if the two functions expect different
patterns of arguments or of local variables. For this reason,
the jump command requests confirmation if the specified line
is not in the function currently executing. However, even
bizarre results are predictable if you are well acquainted
with the machine-language code of your program.

jump *address
Resume execution at the instruction at address address.

You can get much the same effect as the jump command by storing
a new value into the register $pc. The difference is that this does not
start your program running; it only changes the address where it will
run when you continue. For example,

set $pc = 0x485

makes the next continue command or stepping command execute at
address 0x485, rather than at the address where your program stopped.
See Section 5.2 “Continuing and stepping,” page 45.

104 24 October 1995

Chapter 11: Altering Execution

The most common occasion to use the jump command is to back up,
perhaps with more breakpoints set, over a portion of a program that has
already executed, in order to examine its execution in more detail.

11.3 Giving your program a signal

signal signal
Resume execution where your program stopped, but imme-
diately give it the signal signal. signal can be the name
or the number of a signal. For example, on many systems
signal 2 and signal SIGINT are both ways of sending an
interrupt signal.
Alternatively, if signal is zero, continue execution without
giving a signal. This is useful when your program stopped on
account of a signal and would ordinary see the signal when
resumed with the continue command; ‘signal 0’ causes it to
resume without a signal.
signal does not repeat when you press RET a second time
after executing the command.

Invoking the signal command is not the same as invoking the kill
utility from the shell. Sending a signal with kill causes GDB to decide
what to do with the signal depending on the signal handling tables (see
Section 5.3 “Signals,” page 47). The signal command passes the signal
directly to your program.

11.4 Returning from a function

return
return expression

You can cancel execution of a function call with the return
command. If you give an expression argument, its value is
used as the function’s return value.

When you use return, GDB discards the selected stack frame (and all
frames within it). You can think of this as making the discarded frame
return prematurely. If you wish to specify a value to be returned, give
that value as the argument to return.

This pops the selected stack frame (see Section 6.3 “Selecting a frame,”
page 53), and any other frames inside of it, leaving its caller as the
innermost remaining frame. That frame becomes selected. The specified
value is stored in the registers used for returning values of functions.

24 October 1995 105

Debugging with GDB

The return command does not resume execution; it leaves the pro-
gram stopped in the state that would exist if the function had just re-
turned. In contrast, the finish command (see Section 5.2 “Continuing
and stepping,” page 45) resumes execution until the selected stack frame
returns naturally.

11.5 Calling program functions

call expr
Evaluate the expression expr without displaying void re-
turned values.

You can use this variant of the print command if you want to execute
a function from your program, but without cluttering the output with
void returned values. The result is printed and saved in the value
history, if it is not void.

11.6 Patching programs

By default, GDB opens the file containing your program’s executable
code (or the corefile) read-only. This prevents accidental alterations to
machine code; but it also prevents you from intentionally patching your
program’s binary.

If you’d like to be able to patch the binary, you can specify that explic-
itly with the set write command. For example, you might want to turn
on internal debugging flags, or even to make emergency repairs.

set write on
set write off

If you specify ‘set write on’, GDB opens executable and core
files for both reading and writing; if you specify ‘set write
off’ (the default), GDB opens them read-only.
If you have already loaded a file, you must load it again (using
the exec-file or core-file command) after changing set
write, for your new setting to take effect.

show write
Display whether executable files and core files are opened for
writing as well as reading.

106 24 October 1995

Chapter 12: GDB Files

12 GDB Files

GDB needs to know the file name of the program to be debugged, both
in order to read its symbol table and in order to start your program. To
debug a core dump of a previous run, you must also tell GDB the name
of the core dump file.

12.1 Commands to specify files

The usual way to specify executable and core dump file names is
with the command arguments given when you start GDB (see Chapter 2
“Getting In and Out of GDB,” page 11.

Occasionally it is necessary to change to a different file during a GDB
session. Or you may run GDB and forget to specify a file you want to use.
In these situations the GDB commands to specify new files are useful.

file filename
Use filename as the program to be debugged. It is read for
its symbols and for the contents of pure memory. It is also
the program executed when you use the run command. If
you do not specify a directory and the file is not found in the
GDB working directory, GDB uses the environment variable
PATH as a list of directories to search, just as the shell does
when looking for a program to run. You can change the value
of this variable, for both GDB and your program, using the
path command.
On systems with memory-mapped files, an auxiliary file
‘filename.syms’ may hold symbol table information for
filename. If so, GDB maps in the symbol table from
‘filename.syms’, starting up more quickly. See the descrip-
tions of the options ‘-mapped’ and ‘-readnow’ (available on the
command line, and with the commands file, symbol-file,
or add-symbol-file), for more information.

file file with no argument makes GDB discard any information
it has on both executable file and the symbol table.

exec-file [filename]
Specify that the program to be run (but not the symbol ta-
ble) is found in filename. GDB searches the environment
variable PATH if necessary to locate your program. Omitting
filename means to discard information on the executable
file.

24 October 1995 107

Debugging with GDB

symbol-file [filename]
Read symbol table information from file filename. PATH is
searched when necessary. Use the file command to get both
symbol table and program to run from the same file.
symbol-file with no argument clears out GDB information
on your program’s symbol table.
The symbol-file command causes GDB to forget the con-
tents of its convenience variables, the value history, and all
breakpoints and auto-display expressions. This is because
they may contain pointers to the internal data recording
symbols and data types, which are part of the old symbol
table data being discarded inside GDB.
symbol-file does not repeat if you press RET again after
executing it once.
When GDB is configured for a particular environment, it
understands debugging information in whatever format is
the standard generated for that environment; you may use
either a GNU compiler, or other compilers that adhere to
the local conventions. Best results are usually obtained from
GNU compilers; for example, using gcc you can generate
debugging information for optimized code.
On some kinds of object files, the symbol-file command
does not normally read the symbol table in full right away.
Instead, it scans the symbol table quickly to find which source
files and which symbols are present. The details are read
later, one source file at a time, as they are needed.
The purpose of this two-stage reading strategy is to make
GDB start up faster. For the most part, it is invisible except
for occasional pauses while the symbol table details for a
particular source file are being read. (The set verbose com-
mand can turn these pauses into messages if desired. See
Section 14.6 “Optional warnings and messages,” page 118.)
We have not implemented the two-stage strategy for COFF
yet. When the symbol table is stored in COFF format,
symbol-file reads the symbol table data in full right away.

symbol-file filename [-readnow] [-mapped]
file filename [-readnow] [-mapped]

You can override the GDB two-stage strategy for reading
symbol tables by using the ‘-readnow’ option with any of the
commands that load symbol table information, if you want
to be sure GDB has the entire symbol table available.
If memory-mapped files are available on your system through
the mmap system call, you can use another option, ‘-mapped’,

108 24 October 1995

Chapter 12: GDB Files

to cause GDB to write the symbols for your program into a
reusable file. Future GDB debugging sessions map in sym-
bol information from this auxiliary symbol file (if the pro-
gram has not changed), rather than spending time reading
the symbol table from the executable program. Using the
‘-mapped’ option has the same effect as starting GDB with
the ‘-mapped’ command-line option.
You can use both options together, to make sure the auxiliary
symbol file has all the symbol information for your program.
The auxiliary symbol file for a program called myprog is
called ‘myprog.syms’. Once this file exists (so long as it is
newer than the corresponding executable), GDB always at-
tempts to use it when you debug myprog; no special options
or commands are needed.
The ‘.syms’ file is specific to the host machine where you run
GDB. It holds an exact image of the internal GDB symbol
table. It cannot be shared across multiple host platforms.

core-file [filename]
Specify the whereabouts of a core dump file to be used as the
“contents of memory”. Traditionally, core files contain only
some parts of the address space of the process that gener-
ated them; GDB can access the executable file itself for other
parts.
core-file with no argument specifies that no core file is to
be used.
Note that the core file is ignored when your program is actu-
ally running under GDB. So, if you have been running your
program and you wish to debug a core file instead, you must
kill the subprocess in which the program is running. To do
this, use the kill command (see Section 4.8 “Killing the child
process,” page 29).

load filename
Depending on what remote debugging facilities are config-
ured into GDB, the load command may be available. Where
it exists, it is meant to make filename (an executable) avail-
able for debugging on the remote system—by downloading,
or dynamic linking, for example. load also records the file-
name symbol table in GDB, like the add-symbol-file com-
mand.
If your GDB does not have a load command, attempting to
execute it gets the error message “You can’t do that when
your target is ...”

24 October 1995 109

Debugging with GDB

The file is loaded at whatever address is specified in the
executable. For some object file formats, you can specify the
load address when you link the program; for other formats,
like a.out, the object file format specifies a fixed address.
On VxWorks, load links filename dynamically on the cur-
rent target system as well as adding its symbols in GDB.
load does not repeat if you press RET again after using it.

add-symbol-file filename address
add-symbol-file filename address [-readnow] [-mapped]

The add-symbol-file command reads additional symbol ta-
ble information from the file filename. You would use this
command when filename has been dynamically loaded (by
some other means) into the program that is running. ad-
dress should be the memory address at which the file has
been loaded; GDB cannot figure this out for itself. You can
specify address as an expression.
The symbol table of the file filename is added to the sym-
bol table originally read with the symbol-file command.
You can use the add-symbol-file command any number of
times; the new symbol data thus read keeps adding to the old.
To discard all old symbol data instead, use the symbol-file
command.
add-symbol-file does not repeat if you press RET after using
it.
You can use the ‘-mapped’ and ‘-readnow’ options just as with
the symbol-file command, to change how GDB manages
the symbol table information for filename.

info files
info target

info files and info target are synonymous; both print the
current target (see Chapter 13 “Specifying a Debugging Tar-
get,” page 113), including the names of the executable and
core dump files currently in use by GDB, and the files from
which symbols were loaded. The command help targets
lists all possible targets rather than current ones.

All file-specifying commands allow both absolute and relative file
names as arguments. GDB always converts the file name to an absolute
path name and remembers it that way.

GDB supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared li-
braries. GDB automatically loads symbol definitions from shared li-
braries when you use the run command, or when you examine a core
file. (Before you issue the run command, GDB does not understand

110 24 October 1995

Chapter 12: GDB Files

references to a function in a shared library, however—unless you are
debugging a core file).

info share
info sharedlibrary

Print the names of the shared libraries which are currently
loaded.

sharedlibrary regex
share regex

This is an obsolescent command; you can use it to explicitly
load shared object library symbols for files matching a Unix
regular expression, but as with files loaded automatically, it
only loads shared libraries required by your program for a
core file or after typing run. If regex is omitted all shared
libraries required by your program are loaded.

12.2 Errors reading symbol files

While reading a symbol file, GDB occasionally encounters problems,
such as symbol types it does not recognize, or known bugs in compiler
output. By default, GDB does not notify you of such problems, since they
are relatively common and primarily of interest to people debugging com-
pilers. If you are interested in seeing information about ill-constructed
symbol tables, you can either ask GDB to print only one message about
each such type of problem, no matter how many times the problem oc-
curs; or you can ask GDB to print more messages, to see how many times
the problems occur, with the set complaints command (see Section 14.6
“Optional warnings and messages,” page 118).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin
and end (such as at the start of a function or a block of
statements). This error indicates that an inner scope block
is not fully contained in its outer scope blocks.
GDB circumvents the problem by treating the inner block as
if it had the same scope as the outer block. In the error mes-
sage, symbol may be shown as “(don’t know)” if the outer
block is not a function.

block at address out of order
The symbol information for symbol scope blocks should occur
in order of increasing addresses. This error indicates that it
does not do so.

24 October 1995 111

Debugging with GDB

GDB does not circumvent this problem, and has trouble lo-
cating symbols in the source file whose symbols it is reading.
(You can often determine what source file is affected by spec-
ifying set verbose on. See Section 14.6 “Optional warnings
and messages,” page 118.)

bad block start address patched
The symbol information for a symbol scope block has a start
address smaller than the address of the preceding source
line. This is known to occur in the SunOS 4.1.1 (and earlier)
C compiler.
GDB circumvents the problem by treating the symbol scope
block as starting on the previous source line.

bad string table offset in symbol n
Symbol number n contains a pointer into the string table
which is larger than the size of the string table.
GDB circumvents the problem by considering the symbol to
have the name foo, which may cause other problems if many
symbols end up with this name.

unknown symbol type 0xnn
The symbol information contains new data types that GDB
does not yet know how to read. 0xnn is the symbol type of
the misunderstood information, in hexadecimal.
GDB circumvents the error by ignoring this symbol informa-
tion. This usually allows you to debug your program, though
certain symbols are not accessible. If you encounter such a
problem and feel like debugging it, you can debug gdb with
itself, breakpoint on complain, then go up to the function
read_dbx_symtab and examine *bufp to see the symbol.

stub type has NULL name
GDB could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got...
The symbol information for a C++member function is missing
some information that recent versions of the compiler should
have output for it.

info mismatch between compiler and debugger
GDB could not parse a type specification output by the com-
piler.

112 24 October 1995

Chapter 13: Specifying a Debugging Target

13 Specifying a Debugging Target
A target is the execution environment occupied by your program.

Often, GDB runs in the same host environment as your program; in
that case, the debugging target is specified as a side effect when you
use the file or core commands. When you need more flexibility—for
example, running GDB on a physically separate host, or controlling a
standalone system over a serial port or a realtime system over a TCP/IP
connection—you can use the target command to specify one of the target
types configured for GDB (see Section 13.2 “Commands for managing
targets,” page 113).

13.1 Active targets

There are three classes of targets: processes, core files, and executable
files. GDB can work concurrently on up to three active targets, one in
each class. This allows you to (for example) start a process and inspect
its activity without abandoning your work on a core file.

For example, if you execute ‘gdb a.out’, then the executable file a.out
is the only active target. If you designate a core file as well—presumably
from a prior run that crashed and coredumped—then GDB has two active
targets and uses them in tandem, looking first in the corefile target,
then in the executable file, to satisfy requests for memory addresses.
(Typically, these two classes of target are complementary, since core files
contain only a program’s read-write memory—variables and so on—plus
machine status, while executable files contain only the program text and
initialized data.)

When you type run, your executable file becomes an active process
target as well. When a process target is active, all GDB commands
requesting memory addresses refer to that target; addresses in an active
core file or executable file target are obscured while the process target is
active.

Use the core-file and exec-file commands to select a new core
file or executable target (see Section 12.1 “Commands to specify files,”
page 107). To specify as a target a process that is already running, use
the attach command (see Section 4.7 “Debugging an already-running
process,” page 28).

13.2 Commands for managing targets

target type parameters
Connects the GDB host environment to a target machine
or process. A target is typically a protocol for talking to

24 October 1995 113

Debugging with GDB

debugging facilities. You use the argument type to specify
the type or protocol of the target machine.
Further parameters are interpreted by the target protocol,
but typically include things like device names or host names
to connect with, process numbers, and baud rates.
The target command does not repeat if you press RET again
after executing the command.

help target
Displays the names of all targets available. To display tar-
gets currently selected, use either info target or info files
(see Section 12.1 “Commands to specify files,” page 107).

help target name
Describe a particular target, including any parameters nec-
essary to select it.

Different targets are available on different configurations of GDB;
your configuration may have more or fewer targets.

114 24 October 1995

Chapter 14: Controlling GDB

14 Controlling GDB

You can alter the way GDB interacts with you by using the set com-
mand. For commands controlling how GDB displays data, see Section 8.7
“Print settings,” page 71; other settings are described here.

14.1 Prompt

GDB indicates its readiness to read a command by printing a string
called the prompt. This string is normally ‘(gdb)’. You can change
the prompt string with the set prompt command. For instance, when
debugging GDB with GDB, it is useful to change the prompt in one of
the GDB sessions so that you can always tell which one you are talking
to.

set prompt newprompt
Directs GDB to use newprompt as its prompt string hence-
forth.

show prompt
Prints a line of the form: ‘Gdb’s prompt is: your-prompt’

14.2 Command editing

GDB reads its input commands via the readline interface. This GNU
library provides consistent behavior for programs which provide a com-
mand line interface to the user. Advantages are emacs-style or vi-style
inline editing of commands, csh-like history substitution, and a storage
and recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with
the command set.

set editing
set editing on

Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing
Show whether command line editing is enabled.

24 October 1995 115

Debugging with GDB

14.3 Command history

GDB can keep track of the commands you type during your debugging
sessions, so that you can be certain of precisely what happened. Use
these commands to manage the GDB command history facility.

set history filename fname
Set the name of the GDB command history file to fname. This
is the file where GDB reads an initial command history list,
and where it writes the command history from this session
when it exits. You can access this list through history ex-
pansion or through the history command editing characters
listed below. This file defaults to the value of the environ-
ment variable GDBHISTFILE, or to ‘./.gdb_history’ if this
variable is not set.

set history save
set history save on

Record command history in a file, whose name may be spec-
ified with the set history filename command. By default,
this option is disabled.

set history save off
Stop recording command history in a file.

set history size size
Set the number of commands which GDB keeps in its history
list. This defaults to the value of the environment variable
HISTSIZE, or to 256 if this variable is not set.

History expansion assigns special meaning to the character !.
Since ! is also the logical not operator in C, history expansion is off by

default. If you decide to enable history expansion with the set history
expansion on command, you may sometimes need to follow ! (when it
is used as logical not, in an expression) with a space or a tab to prevent
it from being expanded. The readline history facilities do not attempt
substitution on the strings != and !(, even when history expansion is
enabled.

The commands to control history expansion are:

set history expansion on
set history expansion

Enable history expansion. History expansion is off by de-
fault.

set history expansion off
Disable history expansion.

116 24 October 1995

Chapter 14: Controlling GDB

The readline code comes with more complete documentation
of editing and history expansion features. Users unfamiliar
with emacs or vi may wish to read it.

show history
show history filename
show history save
show history size
show history expansion

These commands display the state of the GDB history pa-
rameters. show history by itself displays all four states.

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.

14.4 Screen size

Certain commands to GDB may produce large amounts of informa-
tion output to the screen. To help you read all of it, GDB pauses and
asks you for input at the end of each page of output. Type RET when
you want to continue the output, or q to discard the remaining output.
Also, the screen width setting determines when to wrap lines of output.
Depending on what is being printed, GDB tries to break the line at a
readable place, rather than simply letting it overflow onto the following
line.

Normally GDB knows the size of the screen from the termcap data
base together with the value of the TERM environment variable and the
stty rows and stty cols settings. If this is not correct, you can override
it with the set height and set width commands:

set height lpp
show height
set width cpl
show width

These set commands specify a screen height of lpp lines
and a screen width of cpl characters. The associated show
commands display the current settings.
If you specify a height of zero lines, GDB does not pause
during output no matter how long the output is. This is
useful if output is to a file or to an editor buffer.

24 October 1995 117

Debugging with GDB

Likewise, you can specify ‘set width 0’ to prevent GDB from
wrapping its output.

14.5 Numbers

You can always enter numbers in octal, decimal, or hexadecimal in
GDB by the usual conventions: octal numbers begin with ‘0’, decimal
numbers end with ‘.’, and hexadecimal numbers begin with ‘0x’. Num-
bers that begin with none of these are, by default, entered in base 10;
likewise, the default display for numbers—when no particular format is
specified—is base 10. You can change the default base for both input
and output with the set radix command.

set radix base
Set the default base for numeric input and display. Sup-
ported choices for base are decimal 8, 10, or 16. base must
itself be specified either unambiguously or using the current
default radix; for example, any of

set radix 012
set radix 10.
set radix 0xa

sets the base to decimal. On the other hand, ‘set radix 10’
leaves the radix unchanged no matter what it was.

show radix
Display the current default base for numeric input and dis-
play.

14.6 Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running
on a slow machine, you may want to use the set verbose command. It
makes GDB tell you when it does a lengthy internal operation, so you
will not think it has crashed.

Currently, the messages controlled by set verbose are those which
announce that the symbol table for a source file is being read; see symbol-
file in Section 12.1 “Commands to specify files,” page 107.

set verbose on
Enables GDB output of certain informational messages.

set verbose off
Disables GDB output of certain informational messages.

118 24 October 1995

Chapter 14: Controlling GDB

show verbose
Displays whether set verbose is on or off.

By default, if GDB encounters bugs in the symbol table of an ob-
ject file, it is silent; but if you are debugging a compiler, you may find
this information useful (see Section 12.2 “Errors reading symbol files,”
page 111).

set complaints limit
Permits GDB to output limit complaints about each type of
unusual symbols before becoming silent about the problem.
Set limit to zero to suppress all complaints; set it to a large
number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to
produce.

By default, GDB is cautious, and asks what sometimes seems to be a
lot of stupid questions to confirm certain commands. For example, if you
try to run a program which is already running:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own
commands, you can disable this “feature”:

set confirm off
Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm
Displays state of confirmation requests.

Some systems allow individual object files that make up your pro-
gram to be replaced without stopping and restarting your program. For
example, in VxWorks you can simply recompile a defective object file and
keep on running. If you are running on one of these systems, you can
allow GDB to reload the symbols for automatically relinked modules:

set symbol-reloading on
Replace symbol definitions for the corresponding source file
when an object file with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when re-encountering ob-
ject files of the same name. This is the default state; if you are

24 October 1995 119

Debugging with GDB

not running on a system that permits automatically relink-
ing modules, you should leave symbol-reloading off, since
otherwise GDB may discard symbols when linking large pro-
grams, that may contain several modules (from different di-
rectories or libraries) with the same name.

show symbol-reloading
Show the current on or off setting.

120 24 October 1995

Chapter 15: Canned Sequences of Commands

15 Canned Sequences of Commands

Aside from breakpoint commands (see Section 5.1.7 “Breakpoint com-
mand lists,” page 42), GDB provides two ways to store sequences of com-
mands for execution as a unit: user-defined commands and command
files.

15.1 User-defined commands

A user-defined command is a sequence of GDB commands to which
you assign a new name as a command. This is done with the define
command.

define commandname
Define a command named commandname. If there is already
a command by that name, you are asked to confirm that you
want to redefine it.
The definition of the command is made up of other GDB com-
mand lines, which are given following the define command.
The end of these commands is marked by a line containing
end.

document commandname
Give documentation to the user-defined command command-
name. The command commandname must already be defined.
This command reads lines of documentation just as define
reads the lines of the command definition, ending with end.
After the document command is finished, help on command
commandname displays the documentation you have specified.
You may use the document command again to change the
documentation of a command. Redefining the command with
define does not change the documentation.

help user-defined
List all user-defined commands, with the first line of the
documentation (if any) for each.

show user
show user commandname

Display the GDB commands used to define commandname (but
not its documentation). If no commandname is given, display
the definitions for all user-defined commands.

User-defined commands do not take arguments. When they are exe-
cuted, the commands of the definition are not printed. An error in any
command stops execution of the user-defined command.

24 October 1995 121

Debugging with GDB

Commands that would ask for confirmation if used interactively pro-
ceed without asking when used inside a user-defined command. Many
GDB commands that normally print messages to say what they are doing
omit the messages when used in a user-defined command.

15.2 User-defined command hooks

You may define hooks, which are a special kind of user-defined com-
mand. Whenever you run the command ‘foo’, if the user-defined com-
mand ‘hook-foo’ exists, it is executed (with no arguments) before that
command.

In addition, a pseudo-command, ‘stop’ exists. Defining (‘hook-stop’)
makes the associated commands execute every time execution stops
in your program: before breakpoint commands are run, displays are
printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but
treat them normally during normal execution, you could define:

define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass
end

You can define a hook for any single-word command in GDB, but not
for command aliases; you should define a hook for the basic command
name, e.g. backtrace rather than bt. If an error occurs during the
execution of your hook, execution of GDB commands stops and GDB
issues a prompt (before the command that you actually typed had a
chance to run).

If you try to define a hook which does not match any known command,
you get a warning from the define command.

15.3 Command files

A command file for GDB is a file of lines that are GDB commands.
Comments (lines starting with #) may also be included. An empty line

122 24 October 1995

Chapter 15: Canned Sequences of Commands

in a command file does nothing; it does not mean to repeat the last
command, as it would from the terminal.

When you start GDB, it automatically executes commands from its
init files. These are files named ‘.gdbinit’. GDB reads the init file (if
any) in your home directory, then processes command line options and
operands, and then reads the init file (if any) in the current working
directory. This is so the init file in your home directory can set options
(such as set complaints) which affect the processing of the command
line options and operands. The init files are not executed if you use the
‘-nx’ option; see Section 2.1.2 “Choosing modes,” page 13.

You can also request the execution of a command file with the source
command:

source filename
Execute the command file filename.

The lines in a command file are executed sequentially. They are not
printed as they are executed. An error in any command terminates
execution of the command file.

Commands that would ask for confirmation if used interactively pro-
ceed without asking when used in a command file. Many GDB com-
mands that normally print messages to say what they are doing omit
the messages when called from command files.

15.4 Commands for controlled output

During the execution of a command file or a user-defined command,
normal GDB output is suppressed; the only output that appears is what
is explicitly printed by the commands in the definition. This section
describes three commands useful for generating exactly the output you
want.

echo text
Print text. Nonprinting characters can be included in text
using C escape sequences, such as ‘\n’ to print a newline. No
newline is printed unless you specify one. In addition to
the standard C escape sequences, a backslash followed by a
space stands for a space. This is useful for displaying a string
with spaces at the beginning or the end, since leading and
trailing spaces are otherwise trimmed from all arguments.
To print ‘ and foo = ’, use the command ‘echo \ and foo = \ ’.
A backslash at the end of text can be used, as in C, to con-
tinue the command onto subsequent lines. For example,

echo This is some text\n\

24 October 1995 123

Debugging with GDB

which is continued\n\
onto several lines.\n

produces the same output as
echo This is some text\n
echo which is continued\n
echo onto several lines.\n

output expression
Print the value of expression and nothing but that value:
no newlines, no ‘$nn = ’. The value is not entered in the value
history either. See Section 8.1 “Expressions,” page 63, for
more information on expressions.

output/fmt expression
Print the value of expression in format fmt. You can use the
same formats as for print. See Section 8.4 “Output formats,”
page 66, for more information.

printf string, expressions...
Print the values of the expressions under the control of
string. The expressions are separated by commas and
may be either numbers or pointers. Their values are printed
as specified by string, exactly as if your program were to
execute the C subroutine

printf (string, expressions...);

For example, you can print two values in hex like this:
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the
format string are the simple ones that consist of backslash
followed by a letter.

124 24 October 1995

Chapter 16: Using GDB under GNU Emacs

16 Using GDB under GNU Emacs

A special interface allows you to use GNU Emacs to view (and edit)
the source files for the program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the
executable file you want to debug as an argument. This command starts
GDB as a subprocess of Emacs, with input and output through a newly
created Emacs buffer.

Using GDB under Emacs is just like using GDB normally except for
two things:
� All “terminal” input and output goes through the Emacs buffer.

This applies both to GDB commands and their output, and to the
input and output done by the program you are debugging.

This is useful because it means that you can copy the text of previous
commands and input them again; you can even use parts of the output
in this way.

All the facilities of Emacs’ Shell mode are available for interacting
with your program. In particular, you can send signals the usual way—
for example, C-c C-c for an interrupt, C-c C-z for a stop.
� GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds
the source file for that frame and puts an arrow (‘=>’) at the left margin
of the current line. Emacs uses a separate buffer for source display, and
splits the screen to show both your GDB session and the source.

Explicit GDB list or search commands still produce output as usual,
but you probably have no reason to use them from Emacs.

Warning: If the directory where your program resides is not
your current directory, it can be easy to confuse Emacs about
the location of the source files, in which case the auxiliary dis-
play buffer does not appear to show your source. GDB can find
programs by searching your environment’s PATH variable, so the
GDB input and output session proceeds normally; but Emacs
does not get enough information back from GDB to locate the
source files in this situation. To avoid this problem, either start
GDB mode from the directory where your program resides, or
specify a full path name when prompted for the M-x gdb argu-
ment.
A similar confusion can result if you use the GDB file command
to switch to debugging a program in some other location, from
an existing GDB buffer in Emacs.

24 October 1995 125

Debugging with GDB

By default, M-x gdb calls the program called ‘gdb’. If you need to call
GDB by a different name (for example, if you keep several configurations
around, with different names) you can set the Emacs variable gdb-
command-name; for example,

(setq gdb-command-name "mygdb")

(preceded by ESC ESC, or typed in the *scratch* buffer, or in your
‘.emacs’ file) makes Emacs call the program named “mygdb” instead.

In the GDB I/O buffer, you can use these special Emacs commands in
addition to the standard Shell mode commands:

C-h m Describe the features of Emacs’ GDB Mode.

M-s Execute to another source line, like the GDB step command;
also update the display window to show the current file and
location.

M-n Execute to next source line in this function, skipping all func-
tion calls, like the GDB next command. Then update the
display window to show the current file and location.

M-i Execute one instruction, like the GDB stepi command; up-
date display window accordingly.

M-x gdb-nexti
Execute to next instruction, using the GDB nexti command;
update display window accordingly.

C-c C-f Execute until exit from the selected stack frame, like the
GDB finish command.

M-c Continue execution of your program, like the GDB continue
command.
Warning: In Emacs v19, this command is C-c C-p.

M-u Go up the number of frames indicated by the numeric argu-
ment (see section “Numeric Arguments” in The GNU Emacs
Manual), like the GDB up command.
Warning: In Emacs v19, this command is C-c C-u.

M-d Go down the number of frames indicated by the numeric
argument, like the GDB down command.
Warning: In Emacs v19, this command is C-c C-d.

C-x & Read the number where the cursor is positioned, and insert
it at the end of the GDB I/O buffer. For example, if you wish
to disassemble code around an address that was displayed
earlier, type disassemble; then move the cursor to the ad-
dress display, and pick up the argument for disassemble by
typing C-x &.

126 24 October 1995

Chapter 16: Using GDB under GNU Emacs

You can customize this further by defining elements of the
list gdb-print-command; once it is defined, you can format
or otherwise process numbers picked up by C-x & before they
are inserted. A numeric argument to C-x & indicates that
you wish special formatting, and also acts as an index to pick
an element of the list. If the list element is a string, the
number to be inserted is formatted using the Emacs function
format; otherwise the number is passed as an argument to
the corresponding list element.

In any source file, the Emacs command C-x SPC (gdb-break) tells
GDB to set a breakpoint on the source line point is on.

If you accidentally delete the source-display buffer, an easy way to get
it back is to type the command f in the GDB buffer, to request a frame
display; when you run under Emacs, this recreates the source buffer if
necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers
which are visiting the source files in the usual way. You can edit the files
with these buffers if you wish; but keep in mind that GDB communicates
with Emacs in terms of line numbers. If you add or delete lines from
the text, the line numbers that GDB knows cease to correspond properly
with the code.

24 October 1995 127

Debugging with GDB

128 24 October 1995

Chapter 17: Reporting Bugs in GDB

17 Reporting Bugs in GDB
Your bug reports play an essential role in making GDB reliable.
Reporting a bug may help you by bringing a solution to your problem,

or it may not. But in any case the principal function of a bug report is
to help the entire community by making the next version of GDB work
better. Bug reports are your contribution to the maintenance of GDB.

In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.

17.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some
guidelines:

� If the debugger gets a fatal signal, for any input whatever, that is a
GDB bug. Reliable debuggers never crash.

� If GDB produces an error message for valid input, that is a bug.
� If GDB does not produce an error message for invalid input, that

is a bug. However, you should note that your idea of “invalid in-
put” might be our idea of “an extension” or “support for traditional
practice”.

� If you are an experienced user of debugging tools, your suggestions
for improvement of GDB are welcome in any case.

17.2 How to report bugs

A number of companies and individuals offer support for GNU prod-
ucts. If you obtained GDB from a support organization, we recommend
you contact that organization first.

You can find contact information for many support companies and
individuals in the file ‘etc/SERVICE’ in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for GDB
to one of these addresses:

bug-gdb@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gdb

Do not send bug reports to ‘info-gdb’, or to ‘help-gdb’, or to any
newsgroups. Most users of GDB do not want to receive bug reports.
Those that do, have arranged to receive ‘bug-gdb’.

The mailing list ‘bug-gdb’ has a newsgroup ‘gnu.gdb.bug’ which
serves as a repeater. The mailing list and the newsgroup carry ex-
actly the same messages. Often people think of posting bug reports to

24 October 1995 129

Debugging with GDB

the newsgroup instead of mailing them. This appears to work, but it
has one problem which can be crucial: a newsgroup posting often lacks
a mail path back to the sender. Thus, if we need to ask for more infor-
mation, we may be unable to reach you. For this reason, it is better to
send bug reports to the mailing list.

As a last resort, send bug reports on paper to:
GNU Debugger Bugs
Free Software Foundation
545 Tech Square
Cambridge, MA 02139

The fundamental principle of reporting bugs usefully is this: report
all the facts. If you are not sure whether to state a fact or leave it out,
state it!

Often people omit facts because they think they know what causes
the problem and assume that some details do not matter. Thus, you
might assume that the name of the variable you use in an example does
not matter. Well, probably it does not, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name
were different, the contents of that location would fool the debugger into
doing the right thing despite the bug. Play it safe and give a specific,
complete example. That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable us to fix
the bug if it is new to us. It is not as important as what happens if the
bug is already known. Therefore, always write your bug reports on the
assumption that the bug has not been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a
bell?” Those bug reports are useless, and we urge everyone to refuse to
respond to them except to chide the sender to report bugs properly.

To enable us to fix the bug, you should include all these things:
� The version of GDB. GDB announces it if you start with no argu-

ments; you can also print it at any time using show version.
Without this, we will not know whether there is any point in looking
for the bug in the current version of GDB.

� The type of machine you are using, and the operating system name
and version number.

� What compiler (and its version) was used to compile GDB—e.g. “gcc–
2.0”.

� What compiler (and its version) was used to compile the program
you are debugging—e.g. “gcc–2.0”.

130 24 October 1995

Chapter 17: Reporting Bugs in GDB

� The command arguments you gave the compiler to compile your
example and observe the bug. For example, did you use ‘-O’? To
guarantee you will not omit something important, list them all. A
copy of the Makefile (or the output from make) is sufficient.
If we were to try to guess the arguments, we would probably guess
wrong and then we might not encounter the bug.

� A complete input script, and all necessary source files, that will
reproduce the bug.

� A description of what behavior you observe that you believe is incor-
rect. For example, “It gets a fatal signal.”
Of course, if the bug is that GDB gets a fatal signal, then we will
certainly notice it. But if the bug is incorrect output, we might not
notice unless it is glaringly wrong. We are human, after all. You
might as well not give us a chance to make a mistake.
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as,
your copy of GDB is out of synch, or you have encountered a bug
in the C library on your system. (This has happened!) Your copy
might crash and ours would not. If you told us to expect a crash,
then when ours fails to crash, we would know that the bug was not
happening for us. If you had not told us to expect a crash, then we
would not be able to draw any conclusion from our observations.

� If you wish to suggest changes to the GDB source, send us context
diffs. If you even discuss something in the GDB source, refer to it
by context, not by line number.
The line numbers in our development sources will not match those in
your sources. Your line numbers would convey no useful information
to us.

Here are some things that are not necessary:
� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples.
We recommend that you save your time for something else.
Of course, if you can find a simpler example to report instead of the
original one, that is a convenience for us. Errors in the output will
be easier to spot, running under the debugger will take less time,
and so on.

24 October 1995 131

Debugging with GDB

However, simplification is not vital; if you do not want to do this,
report the bug anyway and send us the entire test case you used.

� A patch for the bug.
A patch for the bug does help us if it is a good one. But do not omit the
necessary information, such as the test case, on the assumption that
a patch is all we need. We might see problems with your patch and
decide to fix the problem another way, or we might not understand
it at all.
Sometimes with a program as complicated as GDB it is very hard to
construct an example that will make the program follow a certain
path through the code. If you do not send us the example, we will
not be able to construct one, so we will not be able to verify that the
bug is fixed.
And if we cannot understand what bug you are trying to fix, or why
your patch should be an improvement, we will not install it. A test
case will help us to understand.

� A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about
such things without first using the debugger to find the facts.

132 24 October 1995

Appendix A: Command Line Editing

Appendix A Command Line Editing

This text describes GNU’s command line editing interface.

A.1 Introduction to Line Editing

The following paragraphs describe the notation we use to represent
keystrokes.

The text C-K is read as ‘Control-K’ and describes the character pro-
duced when the Control key is depressed and the K key is struck.

The text M-K is read as ‘Meta-K’ and describes the character produced
when the meta key (if you have one) is depressed, and the K key is struck.
If you do not have a meta key, the identical keystroke can be generated by
typing ESC first, and then typing K. Either process is known as metafying
the K key.

The text M-C-K is read as ‘Meta-Control-k’ and describes the character
produced by metafying C-K.

In addition, several keys have their own names. Specifically, DEL,
ESC, LFD, SPC, RET, and TAB all stand for themselves when seen in this
text, or in an init file (see Section A.3 “Readline Init File,” page 136, for
more info).

A.2 Readline Interaction

Often during an interactive session you type in a long line of text,
only to notice that the first word on the line is misspelled. The Readline
library gives you a set of commands for manipulating the text as you
type it in, allowing you to just fix your typo, and not forcing you to retype
the majority of the line. Using these editing commands, you move the
cursor to the place that needs correction, and delete or insert the text of
the corrections. Then, when you are satisfied with the line, you simply
press RETURN. You do not have to be at the end of the line to press RETURN;
the entire line is accepted regardless of the location of the cursor within
the line.

A.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed
character appears where the cursor was, and then the cursor moves one
space to the right. If you mistype a character, you can use DEL to back
up, and delete the mistyped character.

24 October 1995 133

Debugging with GDB

Sometimes you may miss typing a character that you wanted to type,
and not notice your error until you have typed several other characters.
In that case, you can type C-B to move the cursor to the left, and then
correct your mistake. Aftwerwards, you can move the cursor to the right
with C-F.

When you add text in the middle of a line, you will notice that char-
acters to the right of the cursor get ‘pushed over’ to make room for the
text that you have inserted. Likewise, when you delete text behind the
cursor, characters to the right of the cursor get ‘pulled back’ to fill in the
blank space created by the removal of the text. A list of the basic bare
essentials for editing the text of an input line follows.

C-B Move back one character.

C-F Move forward one character.

DEL Delete the character to the left of the cursor.

C-D Delete the character underneath the cursor.

Printing characters
Insert itself into the line at the cursor.

C-_ Undo the last thing that you did. You can undo all the way
back to an empty line.

A.2.2 Readline Movement Commands

The above table describes the most basic possible keystrokes that you
need in order to do editing of the input line. For your convenience, many
other commands have been added in addition to C-B, C-F, C-D, and DEL.
Here are some commands for moving more rapidly about the line.

C-A Move to the start of the line.

C-E Move to the end of the line.

M-F Move forward a word.

M-B Move backward a word.

C-L Clear the screen, reprinting the current line at the top.

Notice how C-F moves forward a character, while M-F moves forward
a word. It is a loose convention that control keystrokes operate on
characters while meta keystrokes operate on words.

134 24 October 1995

Appendix A: Command Line Editing

A.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away
for later use, usually by yanking it back into the line. If the description
for a command says that it ‘kills’ text, then you can be sure that you can
get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-K Kill the text from the current cursor position to the end of
the line.

M-D Kill from the cursor to the end of the current word, or if
between words, to the end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if
between words, to the start of the previous word.

C-W Kill from the cursor to the previous whitespace. This is dif-
ferent than M-DEL because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking is

C-Y Yank the most recently killed text back into the buffer at the
cursor.

M-Y Rotate the kill-ring, and yank the new top. You can only do
this if the prior command is C-Y or M-Y.

When you use a kill command, the text is saved in a kill-ring. Any
number of consecutive kills save all of the killed text together, so that
when you yank it back, you get it in one clean sweep. The kill ring is
not line specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

A.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes
the argument acts as a repeat count, other times it is the sign of the
argument that is significant. If you pass a negative argument to a
command which normally acts in a forward direction, that command
will act in a backward direction. For example, to kill text back to the
start of the line, you might type M-- C-K.

The general way to pass numeric arguments to a command is to type
meta digits before the command. If the first ‘digit’ you type is a minus
sign (-), then the sign of the argument will be negative. Once you have
typed one meta digit to get the argument started, you can type the
remainder of the digits, and then the command. For example, to give the
C-D command an argument of 10, you could type M-1 0 C-D.

24 October 1995 135

Debugging with GDB

A.3 Readline Init File

Although the Readline library comes with a set of Emacs-like key-
bindings, it is possible that you would like to use a different set of key-
bindings. You can customize programs that use Readline by putting
commands in an init file in your home directory. The name of this file is
‘˜/.inputrc’.

When a program which uses the Readline library starts up, the
‘˜/.inputrc’ file is read, and the keybindings are set.

In addition, the C-X C-R command re-reads this init file, thus incor-
porating any changes that you might have made to it.

A.3.1 Readline Init Syntax

There are only four constructs allowed in the ‘˜/.inputrc’ file:

Variable Settings
You can change the state of a few variables in Readline. You
do this by using the set command within the init file. Here
is how you would specify that you wish to use Vi line editing
commands:

set editing-mode vi

Right now, there are only a few variables which can be set;
so few in fact, that we just iterate them here:

editing-mode
The editing-mode variable controls which edit-
ing mode you are using. By default, GNU Read-
line starts up in Emacs editing mode, where the
keystrokes are most similar to Emacs. This vari-
able can either be set to emacs or vi.

horizontal-scroll-mode
This variable can either be set to On or Off. Set-
ting it to On means that the text of the lines that
you edit will scroll horizontally on a single screen
line when they are larger than the width of the
screen, instead of wrapping onto a new screen
line. By default, this variable is set to Off.

mark-modified-lines
This variable when set to On, says to display an
asterisk (‘*’) at the starts of history lines which
have been modified. This variable is off by de-
fault.

136 24 October 1995

Appendix A: Command Line Editing

prefer-visible-bell
If this variable is set to On it means to use a visible
bell if one is available, rather than simply ringing
the terminal bell. By default, the value is Off.

Key Bindings
The syntax for controlling keybindings in the ‘˜/.inputrc’
file is simple. First you have to know the name of the com-
mand that you want to change. The following pages contain
tables of the command name, the default keybinding, and a
short description of what the command does.

Once you know the name of the command, simply place the
name of the key you wish to bind the command to, a colon, and
then the name of the command on a line in the ‘˜/.inputrc’
file. The name of the key can be expressed in different ways,
depending on which is most comfortable for you.

keyname: function-name or macro
keyname is the name of a key spelled out in En-
glish. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the above example, C-U is bound to the function
universal-argument, and C-O is bound to run
the macro expressed on the right hand side (that
is, to insert the text ‘>&output’ into the line).

"keyseq": function-name or macro
keyseq differs from keyname above in that strings
denoting an entire key sequence can be specified.
Simply place the key sequence in double quotes.
GNU Emacs style key escapes can be used, as in
the following example:

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11˜": "Function Key 1"

In the above example, C-U is bound to the function
universal-argument (just as it was in the first
example), C-X C-R is bound to the function re-
read-init-file, and ESC [1 1 ˜ is bound to
insert the text ‘Function Key 1’.

24 October 1995 137

Debugging with GDB

A.3.1.1 Commands For Moving

beginning-of-line (C-A)
Move to the start of the current line.

end-of-line (C-E)
Move to the end of the line.

forward-char (C-F)
Move forward a character.

backward-char (C-B)
Move back a character.

forward-word (M-F)
Move forward to the end of the next word.

backward-word (M-B)
Move back to the start of this, or the previous, word.

clear-screen (C-L)
Clear the screen leaving the current line at the top of the
screen.

A.3.1.2 Commands For Manipulating The History

accept-line (Newline, Return)
Accept the line regardless of where the cursor is. If this line
is non-empty, add it to the history list. If this line was a
history line, then restore the history line to its original state.

previous-history (C-P)
Move ‘up’ through the history list.

next-history (C-N)
Move ‘down’ through the history list.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line you are
entering!

reverse-search-history (C-R)
Search backward starting at the current line and moving
‘up’ through the history as necessary. This is an incremental
search.

138 24 October 1995

Appendix A: Command Line Editing

forward-search-history (C-S)
Search forward starting at the current line and moving
‘down’ through the the history as necessary.

A.3.1.3 Commands For Changing Text

delete-char (C-D)
Delete the character under the cursor. If the cursor is at the
beginning of the line, and there are no characters in the line,
and the last character typed was not C-D, then return EOF.

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric arg says
to kill the characters instead of deleting them.

quoted-insert (C-Q, C-V)
Add the next character that you type to the line verbatim.
This is how to insert things like C-Q for example.

tab-insert (M-TAB)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-T)
Drag the character before point forward over the character
at point. Point moves forward as well. If point is at the end
of the line, then transpose the two characters before point.
Negative args don’t work.

transpose-words (M-T)
Drag the word behind the cursor past the word in front of the
cursor moving the cursor over that word as well.

upcase-word (M-U)
Uppercase all letters in the current (or following) word. With
a negative argument, do the previous word, but do not move
point.

downcase-word (M-L)
Lowercase all letters in the current (or following) word. With
a negative argument, do the previous word, but do not move
point.

capitalize-word (M-C)
Uppercase the first letter in the current (or following) word.
With a negative argument, do the previous word, but do not
move point.

24 October 1995 139

Debugging with GDB

A.3.1.4 Killing And Yanking

kill-line (C-K)
Kill the text from the current cursor position to the end of
the line.

backward-kill-line ()
Kill backward to the beginning of the line. This is normally
unbound.

kill-word (M-D)
Kill from the cursor to the end of the current word, or if
between words, to the end of the next word.

backward-kill-word (M-DEL)
Kill the word behind the cursor.

unix-line-discard (C-U)
Do what C-U used to do in Unix line input. We save the killed
text on the kill-ring, though.

unix-word-rubout (C-W)
Do what C-W used to do in Unix line input. The killed text is
saved on the kill-ring. This is different than backward-kill-
word because the word boundaries differ.

yank (C-Y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-Y)
Rotate the kill-ring, and yank the new top. You can only do
this if the prior command is yank or yank-pop.

A.3.1.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)
Add this digit to the argument already accumulating, or start
a new argument. M-- starts a negative argument.

universal-argument ()
Do what C-U does in emacs. By default, this is not bound.

140 24 October 1995

Appendix A: Command Line Editing

A.3.1.6 Letting Readline Type For You

complete (TAB)
Attempt to do completion on the text before point. This is
implementation defined. Generally, if you are typing a file-
name argument, you can do filename completion; if you are
typing a command, you can do command completion, if you
are typing in a symbol to GDB, you can do symbol name com-
pletion, if you are typing in a variable to Bash, you can do
variable name completion...

possible-completions (M-?)
List the possible completions of the text before point.

A.3.1.7 Some Miscellaneous Commands

re-read-init-file (C-X C-R)
Read in the contents of your ‘˜/.inputrc’ file, and incorpo-
rate any bindings found there.

abort (C-G)
Stop running the current editing command.

prefix-meta (ESC)
Make the next character that you type be metafied. This is
for people without a meta key. Typing ESC F is equivalent to
typing M-F.

undo (C-_)
Incremental undo, separately remembered for each line.

revert-line (M-R)
Undo all changes made to this line. This is like typing the
‘undo’ command enough times to get back to the beginning.

24 October 1995 141

Debugging with GDB

A.3.2 Readline Vi Mode

While the Readline library does not have a full set of Vi editing func-
tions, it does contain enough to allow simple editing of the line.

In order to switch interactively between Emacs and Vi editing modes,
use the command M-C-J (toggle-editing-mode).

When you enter a line in Vi mode, you are already placed in ‘insertion’
mode, as if you had typed an ‘i’. Pressing ESC switches you into ‘edit’
mode, where you can edit the text of the line with the standard Vi
movement keys, move to previous history lines with ‘k’, and following
lines with ‘j’, and so forth.

142 24 October 1995

Appendix B: Using History Interactively

Appendix B Using History Interactively

This chapter describes how to use the GNU History Library interac-
tively, from a user’s standpoint.

B.1 History Interaction

The History library provides a history expansion feature that is sim-
ilar to the history expansion in Csh. The following text describes the
sytax that you use to manipulate the history information.

History expansion takes place in two parts. The first is to determine
which line from the previous history should be used during substitution.
The second is to select portions of that line for inclusion into the current
one. The line selected from the previous history is called the event, and
the portions of that line that are acted upon are called words. The line is
broken into words in the same fashion that the Bash shell does, so that
several English (or Unix) words surrounded by quotes are considered as
one word.

B.1.1 Event Designators

An event designator is a reference to a command line entry in the
history list.

! Start a history subsititution, except when followed by a
space, tab, or the end of the line... = or (.

!! Refer to the previous command. This is a synonym for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with string.

!?string[?]
Refer to the most recent command containing string.

B.1.2 Word Designators

A : separates the event specification from the word designator. It
can be omitted if the word designator begins with a ˆ, $, * or %. Words
are numbered from the beginning of the line, with the first word being
denoted by a 0 (zero).

0 (zero) The zero’th word. For many applications, this is the com-
mand word.

24 October 1995 143

Debugging with GDB

n The n’th word.

ˆ The first argument. that is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

x-y A range of words; -y Abbreviates 0-y.

* All of the words, excepting the zero’th. This is a synonym for
1-$. It is not an error to use * if there is just one word in the
event. The empty string is returned in that case.

B.1.3 Modifiers

After the optional word designator, you can add a sequence of one or
more of the following modifiers, each preceded by a :.

The entire command line typed so far. This means the cur-
rent command, not the previous command, so it really isn’t
a word designator, and doesn’t belong in this section.

h Remove a trailing pathname component, leaving only the
head.

r Remove a trailing suffix of the form ‘.’suffix, leaving the
basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

144 24 October 1995

Appendix C: Renamed Commands

Appendix C Renamed Commands

The following commands were renamed in GDB 4, in order to make
the command set as a whole more consistent and easier to use and
remember:

Old Command New Command
add-syms add-symbol-file
delete environment unset environment
info convenience show convenience
info copying show copying
info directories show directories
info editing show commands
info history show values
info targets help target
info values show values
info version show version
info warranty show warranty
set/ show addressprint set/ show print address
set/ show array-max set/ show print elements
set/ show arrayprint set/ show print array
set/ show asm-demangle set/ show print asm-demangle
set/ show caution set/ show confirm
set/ show demangle set/ show print demangle
set/ show history write set/ show history save
set/ show prettyprint set/ show print pretty
set/ show screen-height set/ show height
set/ show screen-width set/ show width
set/ show sevenbit-strings set/ show print sevenbit-strings
set/ show unionprint set/ show print union
set/ show vtblprint set/ show print vtbl

unset (No longer an alias for delete)

24 October 1995 145

Debugging with GDB

146 24 October 1995

Appendix D: Formatting Documentation

Appendix D Formatting Documentation

The GDB 4 release includes an already-formatted reference card,
ready for printing with PostScript or GhostScript, in the ‘gdb’ subdi-
rectory of the main source directory1. If you can use PostScript or
GhostScript with your printer, you can print the reference card immedi-
ately with ‘refcard.ps’.

The release also includes the source for the reference card. You can
format it, using TEX, by typing:

make refcard.dvi

The GDB reference card is designed to print in landscape mode on
US “letter” size paper; that is, on a sheet 11 inches wide by 8.5 inches
high. You will need to specify this form of printing as an option to your
dvi output program.

All the documentation for GDB comes as part of the machine-readable
distribution. The documentation is written in Texinfo format, which is
a documentation system that uses a single source file to produce both
on-line information and a printed manual. You can use one of the Info
formatting commands to create the on-line version of the documentation
and TEX (or texi2roff) to typeset the printed version.

GDB includes an already formatted copy of the on-line Info ver-
sion of this manual in the ‘gdb’ subdirectory. The main Info file is
‘gdb-version-number/gdb/gdb.info’, and it refers to subordinate files
matching ‘gdb.info*’ in the same directory. If necessary, you can print
out these files, or read them with any editor; but they are easier to
read using the info subsystem in GNU Emacs or the standalone info
program, available as part of the GNU Texinfo distribution.

If you want to format these Info files yourself, you need one of the Info
formatting programs, such as texinfo-format-buffer or makeinfo.

If you have makeinfo installed, and are in the top level GDB source
directory (‘gdb-4.12’, in the case of version 4.12), you can make the Info
file by typing:

cd gdb
make gdb.info

If you want to typeset and print copies of this manual, you need TEX,
a program to print its dvi output files, and ‘texinfo.tex’, the Texinfo
definitions file.

TEX is a typesetting program; it does not print files directly, but
produces output files called dvi files. To print a typeset document, you
need a program to print dvi files. If your system has TEX installed,

1 In ‘gdb-4.12/gdb/refcard.ps’ of the version 4.12 release.

24 October 1995 147

Debugging with GDB

chances are it has such a program. The precise command to use depends
on your system; lpr -d is common; another (for PostScript devices) is
dvips. The dvi print command may require a file name without any
extension or a ‘.dvi’ extension.

TEX also requires a macro definitions file called ‘texinfo.tex’.
This file tells TEX how to typeset a document written in Texinfo for-
mat. On its own, TEX cannot read, much less typeset a Texinfo
file. ‘texinfo.tex’ is distributed with GDB and is located in the
‘gdb-version-number/texinfo’ directory.

If you have TEX and a dvi printer program installed, you can typeset
and print this manual. First switch to the the ‘gdb’ subdirectory of the
main source directory (for example, to ‘gdb-4.12/gdb’) and then type:

make gdb.dvi

148 24 October 1995

Appendix E: Installing GDB

Appendix E Installing GDB

GDB comes with a configure script that automates the process of
preparing GDB for installation; you can then use make to build the gdb
program.1

The GDB distribution includes all the source code you need for GDB
in a single directory, whose name is usually composed by appending the
version number to ‘gdb’.

For example, the GDB version 4.12 distribution is in the ‘gdb-4.12’
directory. That directory contains:

gdb-4.12/configure (and supporting files)
script for configuring GDB and all its supporting libraries.

gdb-4.12/gdb
the source specific to GDB itself

gdb-4.12/bfd
source for the Binary File Descriptor library

gdb-4.12/include
GNU include files

gdb-4.12/libiberty
source for the ‘-liberty’ free software library

gdb-4.12/opcodes
source for the library of opcode tables and disassemblers

gdb-4.12/readline
source for the GNU command-line interface

gdb-4.12/glob
source for the GNU filename pattern-matching subroutine

gdb-4.12/mmalloc
source for the GNU memory-mapped malloc package

The simplest way to configure and build GDB is to run configure
from the ‘gdb-version-number’ source directory, which in this example
is the ‘gdb-4.12’ directory.

First switch to the ‘gdb-version-number’ source directory if you are
not already in it; then run configure. Pass the identifier for the platform
on which GDB will run as an argument.

For example:

1 If you have a more recent version of GDB than 4.12, look at the
‘README’ file in the sources; we may have improved the installation
procedures since publishing this manual.

24 October 1995 149

Debugging with GDB

cd gdb-4.12
./configure host
make

where host is an identifier such as ‘sun4’ or ‘decstation’, that identi-
fies the platform where GDB will run. (You can often leave off host;
configure tries to guess the correct value by examining your system.)

Running ‘configure host’ and then running make builds the ‘bfd’,
‘readline’, ‘mmalloc’, and ‘libiberty’ libraries, then gdb itself. The
configured source files, and the binaries, are left in the corresponding
source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not
recognize this automatically when you run a different shell, you may
need to run sh on it explicitly:

sh configure host

If you run configure from a directory that contains source directo-
ries for multiple libraries or programs, such as the ‘gdb-4.12’ source
directory for version 4.12, configure creates configuration files for
every directory level underneath (unless you tell it not to, with the
‘--norecursion’ option).

You can run the configure script from any of the subordinate di-
rectories in the GDB distribution if you only want to configure that
subdirectory, but be sure to specify a path to it.

For example, with version 4.12, type the following to configure only
the bfd subdirectory:

cd gdb-4.12/bfd
../configure host

You can install gdb anywhere; it has no hardwired paths. However,
you should make sure that the shell on your path (named by the ‘SHELL’
environment variable) is publicly readable. Remember that GDB uses
the shell to start your program—some systems refuse to let GDB debug
child processes whose programs are not readable.

E.1 Compiling GDB in another directory

If you want to run GDB versions for several host or target machines,
you need a different gdb compiled for each combination of host and
target. configure is designed to make this easy by allowing you to
generate each configuration in a separate subdirectory, rather than in
the source directory. If your make program handles the ‘VPATH’ feature
(GNU make does), running make in each of these directories builds the
gdb program specified there.

150 24 October 1995

Appendix E: Installing GDB

To build gdb in a separate directory, run configure with the
‘--srcdir’ option to specify where to find the source. (You also need
to specify a path to find configure itself from your working directory. If
the path to configure would be the same as the argument to ‘--srcdir’,
you can leave out the ‘--srcdir’ option; it is assumed.)

For example, with version 4.12, you can build GDB in a separate
directory for a Sun 4 like this:

cd gdb-4.12
mkdir ../gdb-sun4
cd ../gdb-sun4
../gdb-4.12/configure sun4
make

When configure builds a configuration using a remote source di-
rectory, it creates a tree for the binaries with the same structure (and
using the same names) as the tree under the source directory. In the
example, you’d find the Sun 4 library ‘libiberty.a’ in the directory
‘gdb-sun4/libiberty’, and GDB itself in ‘gdb-sun4/gdb’.

One popular reason to build several GDB configurations in separate
directories is to configure GDB for cross-compiling (where GDB runs on
one machine—the host—while debugging programs that run on another
machine—the target). You specify a cross-debugging target by giving
the ‘--target=target’ option to configure.

When you run make to build a program or library, you must run it in
a configured directory—whatever directory you were in when you called
configure (or one of its subdirectories).

The Makefile that configure generates in each source directory
also runs recursively. If you type make in a source directory such
as ‘gdb-4.12’ (or in a separate configured directory configured with
‘--srcdir=path/gdb-4.12’), you will build all the required libraries,
and then build GDB.

When you have multiple hosts or targets configured in separate di-
rectories, you can run make on them in parallel (for example, if they are
NFS-mounted on each of the hosts); they will not interfere with each
other.

E.2 Specifying names for hosts and targets

The specifications used for hosts and targets in the configure script
are based on a three-part naming scheme, but some short predefined
aliases are also supported. The full naming scheme encodes three pieces
of information in the following pattern:

architecture-vendor-os

24 October 1995 151

Debugging with GDB

For example, you can use the alias sun4 as a host argument, or as
the value for target in a --target=target option. The equivalent full
name is ‘sparc-sun-sunos4’.

The configure script accompanying GDB does not provide any query
facility to list all supported host and target names or aliases. configure
calls the Bourne shell script config.sub to map abbreviations to full
names; you can read the script, if you wish, or you can use it to test your
guesses on abbreviations—for example:

% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub decstation
mips-dec-ultrix4.2
% sh config.sub hp300bsd
m68k-hp-bsd
% sh config.sub i386v
i386-unknown-sysv
% sh config.sub i786v
Invalid configuration ‘i786v’: machine ‘i786v’ not recognized

config.sub is also distributed in the GDB source directory (‘gdb-4.12’,
for version 4.12).

E.3 configure options

Here is a summary of the configure options and arguments that
are most often useful for building GDB. configure also has several
other options not listed here. See Info file ‘configure.info’, node ‘What
Configure Does’, for a full explanation of configure.

configure [--help]
[--prefix=dir]
[--srcdir=path]
[--norecursion] [--rm]
[--target=target] host

You may introduce options with a single ‘-’ rather than ‘--’ if you prefer;
but you may abbreviate option names if you use ‘--’.

--help Display a quick summary of how to invoke configure.

-prefix=dir
Configure the source to install programs and files under di-
rectory ‘dir’.

152 24 October 1995

Appendix E: Installing GDB

--srcdir=path
Warning: using this option requires GNU make, or an-
other make that implements the VPATH feature.
Use this option to make configurations in directories separate
from the GDB source directories. Among other things, you
can use this to build (or maintain) several configurations si-
multaneously, in separate directories. configure writes con-
figuration specific files in the current directory, but arranges
for them to use the source in the directory path. configure
creates directories under the working directory in parallel to
the source directories below path.

--norecursion
Configure only the directory level where configure is exe-
cuted; do not propagate configuration to subdirectories.

--rm Remove files otherwise built during configuration.

--target=target
Configure GDB for cross-debugging programs running on the
specified target. Without this option, GDB is configured to
debug programs that run on the same machine (host) as
GDB itself.
There is no convenient way to generate a list of all available
targets.

host ... Configure GDB to run on the specified host.
There is no convenient way to generate a list of all available
hosts.

configureaccepts other options, for compatibility with configuring other
GNU tools recursively; but these are the only options that affect GDB or
its supporting libraries.

24 October 1995 153

Debugging with GDB

154 24 October 1995

Index

Index

#
. 17
in Modula-2 . 97

$
$. 76
$$. 76
$. 78
$ and info breakpoints 35
$ and info line . 61
$, $, and value history 68
$. 78
$bpnum . 34
$cdir . 60
$cwd . 60

.

. 96
‘.gdbinit’ . 123

/
/proc . 29

:
:: . 65, 96

@
@ . 65

{
{type} . 64

A
a.out and C++ . 89
abbreviation . 17
active targets . 113
add-symbol-file 110
add-syms . 145
AMD 29K register stack 80
arguments (to your program) 25
artificial array . 65

assembly instructions 61
assignment . 103
attach . 28
automatic display . 69
automatic thread selection 31

B
b . 34
backtrace . 52
break . 34
break : : : thread threadno 49
break in overloaded functions 90
breakpoint commands 42
breakpoint conditions 40
breakpoint numbers 33
breakpoint on memory address 33
breakpoint on variable modification . . . 33
breakpoints . 33
breakpoints and threads 49
bt . 52
bug criteria . 129
bug reports . 129
bugs in GDB . 129

C
c . 45
C and C++ . 86
C and C++ checks . 90
C and C++ constants 88
C and C++ defaults 90
C and C++ operators 86
C++ . 86
C++ and object formats 89
C++ exception handling 91
C++ scope resolution 65
C++ support, not in coff 89
C++ symbol decoding style 75
C++ symbol display 91
call . 106
call overloaded functions 89
call stack . 51
calling functions . 106
calling make . 15

24 October 1995 155

Debugging with GDB

casts, to view memory 64
catch . 37
catch exceptions . 55
cd . 27
cdir . 60
checks, range . 84
checks, type . 83
clear . 39
clearing breakpoints, watchpoints 38
coff versus C++ . 89
colon, doubled as scope operator 96
colon-colon . 65
command files . 122
command line editing 115
commands . 42
commands for C++ . 90
comment . 17
compilation directory 60
completion . 18
completion of quoted strings 19
condition . 41
conditional breakpoints 40
configuring GDB . 149
confirmation . 119
continue . 45
continuing . 45
continuing threads . 49
controlling terminal 27
convenience variables 77
core . 109
core dump file . 107
core-file . 109
crash of debugger . 129
current directory . 60
current thread . 30
cwd . 60

D
d . 39
debugger crash . 129
debugging optimized code 23
debugging target . 113
define . 121
delete . 39
delete breakpoints . 39
delete display . 70
delete environment 145
deleting breakpoints, watchpoints 38

detach . 28
directories for source files 59
directory . 59
directory, compilation 60
directory, current . 60
dis . 40
disable . 40
disable breakpoints 40
disable display . 70
disabled breakpoints 39
disassemble . 61
display . 69
display of expressions 69
do . 53
document . 121
documentation . 147
down . 53
down-silently . 54
dynamic linking . 110

E
echo . 123
ecoff and C++ . 89
editing . 115
editing-mode . 136
elf/dwarf and C++ . 89
elf/stabs and C++ . 89
emacs . 125
enable . 40
enable breakpoints 40
enable display . 70
enabled breakpoints 39
end . 42
entering numbers . 118
environment (of your program) 25
error on valid input 129
event designators . 143
examining data . 63
examining memory 67
exception handlers 37, 55
exec-file . 107
executable file . 107
exiting GDB . 14
expansion . 143
expressions . 63
expressions in C or C++ 86
expressions in C++ . 89
expressions in Modula-2 92

156 24 October 1995

Index

F
f . 53
fatal signal . 129
fatal signals . 47
fg . 45
file . 107
finish . 46
flinching . 119
floating point . 80
floating point registers 79
focus of debugging . 30
foo . 112
format options . 71
formatted output . 66
Fortran . 1
forward-search . 59
frame . 51
frame . 53
frame number. 51
frame pointer . 51
frameless execution 52

G
g++ . 86
GDB bugs, reporting 129
GDB reference card 147
GDBHISTFILE . 116
GNU C++ . 86

H
h . 19
handle . 48
handling signals . 48
help . 19
help target . 114
help user-defined 121
heuristic-fence-post (MIPS). 55
history expansion . 116
history file . 116
history number . 76
history save . 116
history size . 116
history substitution 116
horizontal-scroll-mode 136

I
i . 20

i/o . 27
ignore . 42
ignore count (of breakpoint) 41
info . 20
info address . 99
info all-registers 79
info args . 55
info breakpoints 35
info catch . 55
info convenience 145
info copying . 145
info directories 145
info display . 70
info editing . 145
info f . 54
info files . 110
info float . 80
info frame . 54, 82
info functions . 100
info history . 145
info line . 60
info locals . 55
info proc . 29
info proc id . 30
info proc mappings 29
info proc status 30
info proc times . 29
info program . 33
info registers . 78
info s . 52
info set . 21
info share . 111
info sharedlibrary 111
info signals . 48
info source . 82, 100
info sources . 100
info stack . 52
info target . 110
info targets . 145
info terminal . 27
info threads . 31
info types . 100
info values . 145
info variables . 101
info version . 145
info warranty . 145
info watchpoints 37
inheritance . 91

24 October 1995 157

Debugging with GDB

init file . 123
initial frame . 51
innermost frame . 51
inspect . 63
installation . 149
instructions, assembly 61
interaction, readline 133
internal GDB breakpoints 36
interrupt . 14
invalid input . 129

J
jump . 104

K
kill . 29

L
l . 57
languages . 81
latest breakpoint . 34
leaving GDB . 14
linespec . 58
list . 57
listing machine instructions 61
load . 109

M
machine instructions. 61
maint info breakpoints 36
maint print psymbols 101
maint print symbols 101
make . 15
mapped . 108
mark-modified-lines 136
member functions . 89
memory tracing . 33
memory, viewing as typed object 64
memory-mapped symbol file 108
MIPS stack . 55
Modula-2 . 92
Modula-2 built-ins . 93
Modula-2 checks . 96
Modula-2 constants 95
Modula-2 defaults. 95
Modula-2 operators 92
Modula-2, deviations from 96

multiple targets . 113
multiple threads . 30

N
n . 46
names of symbols . 99
namespace in C++ . 89
negative breakpoint numbers 36
New systag . 30
next . 46
nexti . 47
ni . 47
number representation 118
numbers for breakpoints 33

O
object formats and C++ 89
online documentation 19
optimized code, debugging 23
outermost frame . 51
output . 124
output formats . 66
overloading . 43
overloading in C++ . 91

P
partial symbol dump 101
patching binaries . 106
path . 26
pauses in output . 117
pipes . 25
pointer, finding referent 72
prefer-visible-bell 137
print . 63
print settings . 71
printf . 124
printing data . 63
process image . 29
prompt . 115
ptype . 99
pwd . 27

Q
q . 14
quit . 14
quotes in commands 19
quoting names . 99

158 24 October 1995

Index

R
raise exceptions . 38
range checking . 84
rbreak . 35
reading symbols immediately 108
readline. 115
readnow . 108
redirection . 27
reference card . 147
reference declarations 89
register stack, AMD29K 80
registers . 78
regular expression . 35
reloading symbols 119
repeating commands 17
reporting bugs in GDB 129
response time, MIPS debugging 55
resuming execution 45
RET . 17
return . 105
returning from a function 105
reverse-search . 59
run . 24
running . 24

S
s . 45
saving symbol table 108
scope . 96
search . 59
searching . 59
selected frame . 51
set addressprint 145
set args . 25
set array-max . 145
set arrayprint . 145
set asm-demangle 145
set caution . 145
set check . 84, 85
set check range . 85
set check type . 84
set complaints . 119
set confirm . 119
set demangle . 145
set demangle-style 75
set editing . 115
set environment . 26
set height . 117

set history expansion 116
set history filename 116
set history save 116
set history size 116
set history write 145
set language . 81
set listsize . 57
set prettyprint 145
set print address 71
set print array . 73
set print asm-demangle 75
set print demangle 75
set print elements 73
set print fast-symbolic-addr . . . 72
set print max-symbolic-offset . . 72
set print object 76
set print pretty 73
set print sevenbit-strings 74
set print symbol-filename 71
set print union . 74
set print vtbl . 76
set prompt . 115
set radix . 118
set rstack high address 80
set screen-height 145
set screen-width 145
set sevenbit-strings 145
set symbol-reloading 119
set unionprint . 145
set variable . 103
set verbose . 118
set vtblprint . 145
set width . 117
set write . 106
setting variables . 103
setting watchpoints 37
share . 111
shared libraries . 110
sharedlibrary . 111
shell . 15
shell escape . 15
show . 20
show addressprint 145
show args . 25
show array-max . 145
show arrayprint 145
show asm-demangle 145
show caution . 145

24 October 1995 159

Debugging with GDB

show check range 85
show check type . 84
show commands . 117
show complaints 119
show confirm . 119
show convenience 78
show copying . 21
show demangle . 145
show demangle-style 75
show directories 60
show editing . 115
show environment 26
show height . 117
show history . 117
show history write 145
show language . 82
show listsize . 57
show paths . 26
show prettyprint 145
show print address 71
show print array 73
show print asm-demangle 75
show print demangle 75
show print elements 73
show print fast-symbolic-addr . . 72
show print max-symbolic-offset

. 72
show print object 76
show print pretty 74
show print sevenbit-strings 74
show print symbol-filename 72
show print union 74
show print vtbl . 76
show prompt . 115
show radix . 118
show rstack high address 80
show screen-height 145
show screen-width 145
show sevenbit-strings 145
show unionprint 145
show user . 121
show values . 77
show verbose . 118
show version . 21
show vtblprint . 145
show warranty . 21
show width . 117

show write . 106
si . 47
signal . 105
signals . 47
silent . 43
size of screen . 117
source . 123
source path . 59
stack frame . 51
stack on MIPS . 55
stacking targets . 113
starting . 24
step . 45
stepi . 47
stepping . 45
stopped threads . 49
stupid questions . 119
switching threads . 30
switching threads automatically 31
symbol decoding style, C++ 75
symbol dump . 101
symbol names . 99
symbol overloading 43
symbol table . 107
symbol-file . 108
symbols, reading immediately 108

T
target . 113
tbreak . 35
terminal . 27
this . 89
thread breakpoints. 49
thread identifier (GDB) 31
thread identifier (system) 30
thread number . 31
thread threadno . 31
threads and watchpoints 37
threads of execution 30
threads, automatic switching 31
threads, continuing 49
threads, stopped . 49
toggle-editing-mode 142
tty . 27
type casting memory 64
type checking . 83
type conversions in C++ 89

160 24 October 1995

Index

U
u . 46
undisplay . 70
unknown address, locating 66
unset . 145
unset environment 26
until . 46
up . 53
up-silently . 54
user-defined command 121

V
value history . 76
variable name conflict. 64
variable values, wrong 65
variables, setting . 103
version number . 21
vi style command editing 142

W
watch . 37
watchpoints . 33
watchpoints and threads 37
whatis . 99
where . 52
wild pointer, interpreting 72
word completion . 18
working directory . 60
working directory (of your program) . . 27
working language . 81
writing into corefiles 106
writing into executables 106
wrong values . 65

X
x . 67
xcoff and C++ . 89

24 October 1995 161

Debugging with GDB

The body of this manual is set in
pncr at 10.95pt,

with headings in pncb at 10.95pt
and examples in pcrr.

pncri at 10.95pt,
pncb at 10.95pt, and

pcrro
are used for emphasis.

162 24 October 1995

